1,651 research outputs found

    Application of Aligned Carbon Nanotube-Reinforced Polymer Composite to Electrothermal Actuator

    Get PDF
    Electrothermal bimorph actuators have been widely researched, comprising two layers with asymmetric expansion that generate a bending displacement. Actuation performance greatly relies upon the difference of the coefficients of thermal expansion (CTE) between the two material layers. Since traditionally used bimorph materials have positive CTE values, the generated displacements are restricted because of their relatively low CTE difference. Currently, the synthesis and characterization of carbon nanotube (CNT)/polymer composite actuators are topics of intense research activity. CNTs have been attracting much interest because of their superior electrical, thermal and mechanical properties. In addition, the negative CTE value of CNTs in the axial direction has been investigated analytically, leading one to expect that the CTE of the composites in a direction parallel to the CNT alignment will drastically decrease by containing the aligned CNTs into polymer materials. In this chapter, an experimental method for determining the CTE of a CNT in the axial direction is discussed. Based on this result, we demonstrate an electrothermal bimorph actuator having a large bending displacement and high force output using an aligned CNT-reinforced epoxy composite and thin aluminum foil. Performance characteristics including power and work output per unit volume versus frequency are also reviewed

    Preliminary study on heartbeats and swimming behavior of free-ranging fish, red sea bream Pagrus major, measured with newly developed micro data-logger

    Get PDF
    To estimate the physiological condition or metabolic rate simultaneously with swimming behavior, we recorded a continuous electrocardiogram (ECG) in freely swimming fish, red sea bream Pagrus major, in a net pen during a 24h period. Swimming speed, swimming depth, and the bioelectric potential of the heart in the test fish were recorded with a micro data-logger. It is difficult to eliminate electric noise while recording ECGs of actively swimming fish. In the present experiment, we attached electrodes to two points on the ventral surface and successfully obtained data. Two types of micro data-loggers (one for recording ECG and another for swimming speed and depth) were attached to the dorsal side of the fish. The red sea bream swam slowly ( <1 total length/s) and stayed deeper in the net pen during most of the day, except for frequent burst of speed and vertical movements around dawn. An analysis of heartbeat variability, showed that high-frequency components, representing vagal (parasympathetic) nerve activity, rose only around midnight

    Mechanical and Fracture Properties of Carbon Nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have attracted much interest because of their superior electrical, thermal, and mechanical properties. These unique properties of CNTs have come to the attention of many scientists and engineers worldwide, eager to incorporate these novel materials into composites and electronic devices. However, before the utilization of these materials becomes mainstream, it is necessary to develop protocols for tailoring the material properties, so that composites and devices can be engineered to given specifications. In this chapter, we review our recent studies, in which we investigate the nominal tensile strength and strength distribution of multi-walled CNTs (MWCNTs) synthesized by the catalytic chemical vapor deposition (CVD) method, followed by a series of high-temperature annealing steps that culminate with annealing at 2900°C. The structural-mechanical relationships of such MWCNTs are investigated through tensile-loading experiments with individual MWCNTs, Weibull-Poisson statistics, transmission electron microscope (TEM) observation, and Raman spectroscopy analysis

    Fruit scent and observer colour vision shape food-selection strategies in wild capuchin monkeys

    Full text link
    The senses play critical roles in helping animals evaluate foods, including fruits that can change both in colour and scent during ripening to attract frugivores. Although numerous studies have assessed the impact of colour on fruit selection, comparatively little is known about fruit scent and how olfactory and visual data are integrated during foraging. We combine 25 months of behavioural data on 75 wild, white-faced capuchins (Cebus imitator) with measurements of fruit colours and scents from 18 dietary plant species. We show that frequency of fruit-directed olfactory behaviour is positively correlated with increases in the volume of fruit odours produced during ripening. Monkeys with red-green colour blindness sniffed fruits more often, indicating that increased reliance on olfaction is a behavioural strategy that mitigates decreased capacity to detect red-green colour contrast. These results demonstrate a complex interaction among fruit traits, sensory capacities and foraging strategies, which help explain variation in primate behaviour.https://www.nature.com/articles/s41467-019-10250-9Published versio

    Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification

    Get PDF
    Microtubules (MTs) polymerized with GMPCPP, a slowly hydrolyzable GTP analogue, are stable in buffer but are rapidly depolymerized in Xenopus egg extracts. This depolymerization is independent of three previously identified MT destabilizers (Op18, katanin, and XKCM1/KinI). We purified the factor responsible for this novel depolymerizing activity using biochemical fractionation and a visual activity assay and identified it as XMAP215, previously identified as a prominent MT growth–promoting protein in Xenopus extracts. Consistent with the purification results, we find that XMAP215 is necessary for GMPCPP-MT destabilization in extracts and that recombinant full-length XMAP215 as well as an NH2-terminal fragment have depolymerizing activity in vitro. Stimulation of depolymerization is specific for the MT plus end. These results provide evidence for a robust MT-destabilizing activity intrinsic to this microtubule-associated protein and suggest that destabilization may be part of its essential biochemical functions. We propose that the substrate in our assay, GMPCPP-stabilized MTs, serves as a model for the pause state of MT ends and that the multiple activities of XMAP215 are unified by a mechanism of antagonizing MT pauses
    corecore