86 research outputs found

    Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases

    The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination

    No full text
    Some of the most significant medical achievements in recent history are the development of distinct and effective vaccines, and the improvement of the efficacy of previously existing ones, which have contributed to the eradication of many dangerous and life-threatening diseases. Immunization depends on the generation of a physiological memory response and protection against infection. It is therefore crucial that antigens are delivered in an efficient manner, to elicit a robust immune response. The recent approval of COVID-19 vaccines containing lipid nanoparticles encapsulating mRNA demonstrates the broad potential of lipid-based delivery systems. In light of this, the present review article summarizes currently synthesized lipid-based nanoparticles such as liposomes, lipid-nano particles, or cell-derived exosomes

    Behavioral Characterizing of CD24 Knockout Mouse—Cognitive and Emotional Alternations

    No full text
    CD24 is a small, glycophosphatidylinositol-anchored cell surface protein, mostly investigated with respect to cancer, inflammation, and autoimmune diseases. CD24 knockdown or inhibition has been used to test various biochemical mechanisms and neurological conditions; however, the association between CD24 and behavioral phenotypes has not yet been examined. This study aims to characterize cognitive and emotional functions of CD24 knockout mice (CD24−/− )compared with CD24 wild-type mice at three time-points: adolescence, young adulthood, and adulthood. Our results show that CD24−/− mice exhibited better cognitive performance and less anxiety-like behavior compared with WT mice, with no effect on depression-like behavior. This phenotype was constant from childhood (2 months old) to adulthood (6 months old). The results from our study suggest that CD24 may influence important behavioral aspects at the whole-organism level, which should be taken into consideration when using CD24 knockout models

    Behavioral Characterizing of CD24 Knockout Mouse—Cognitive and Emotional Alternations

    No full text
    CD24 is a small, glycophosphatidylinositol-anchored cell surface protein, mostly investigated with respect to cancer, inflammation, and autoimmune diseases. CD24 knockdown or inhibition has been used to test various biochemical mechanisms and neurological conditions; however, the association between CD24 and behavioral phenotypes has not yet been examined. This study aims to characterize cognitive and emotional functions of CD24 knockout mice (CD24−/− )compared with CD24 wild-type mice at three time-points: adolescence, young adulthood, and adulthood. Our results show that CD24−/− mice exhibited better cognitive performance and less anxiety-like behavior compared with WT mice, with no effect on depression-like behavior. This phenotype was constant from childhood (2 months old) to adulthood (6 months old). The results from our study suggest that CD24 may influence important behavioral aspects at the whole-organism level, which should be taken into consideration when using CD24 knockout models
    corecore