54 research outputs found
Risk of female athlete triad development in Japanese collegiate athletes is related to sport type and competitive level
Introduction: Menstrual dysfunction, musculoskeletal injury, and poor nutrition combine to form the female athlete triad (FAT), which results in serious health consequences for affected athletes. To this point, the risk factors of this phenomenon have not been fully explored in Japanese female college athletes. Additionally, the effect of competitive level on FAT risk factors has also not been reported. Therefore, we aimed to examine FAT risk factors in Japanese female athletes of various sports as well as examine the impact of competitive level on FAT.Methods: A Japanese-language survey was completed by 531 athletes and 20 nonathletes at two Japanese universities and answers with regard to menstrual status, musculoskeletal injury, nutrition, and other variables were analyzed based on classification of the sports into nine distinct groups based on activity type. Sport intensity, training volume, and competitive levels were used to further classify each sport. One-way ANOVA and the Bonferroni post hoc test using SPSS were carried out to analyze significance for relationships between sport intensity and FAT risk factors. Additionally, the relationship between competitive level and FAT risk factors was analyzed by ANOVA and Bonferroni post hoc tests.Results: Sport intensity was positively correlated with a delay in menarche as well as dysmenorrhea and poor nutrition while musculoskeletal injury was correlated with repetitive, high-training volume sports. Lower competitive levels increased dysmenorrhea but did not impact injury status or nutrition.Conclusion: Sport intensity and training volume, but not competitive level, are the critical factors affecting FAT risk in Japanese female college athletes
MRI reveals menstrually-related muscle edema that negatively affects athletic agility in young women
ContextAbout 10% of Japanese female athletes are afflicted by menstrually-related edema, mainly in the lower limbs, and, with few studies on this problem, the effect on performance remains unclear.ObjectiveTo quantitatively evaluate fluid retention in the calf in female students over their menstrual cycle using magnetic resonance imaging (MRI) and to determine the relationship of MRI changes and athletic performance.DesignThe menstrual cycle was divided into 5 phases: menstrual, follicular, ovulatory, early luteal, and late luteal with sampling done in either morning (AM) or afternoon (PM) sessions. At each phase, MRI of the calf (7:00–8:00, 14:00–16:00), body composition and hormones (7:00–8:00), and athletic performance (14:00–16:00) were evaluated
Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE)
Autoimmunity is prevented by the function of the autoimmune regulator [AIRE (Aire in mice)], which promotes the expression of a wide variety of tissue-restricted antigens (TRAs) from medullary thymic epithelial cells (mTECs) and from a subset of peripheral antigen-presenting cells (APCs). We examined the effect of additive expression of human AIRE (huAIRE) in a model of autoimmune diabetes in NOD mice. Unexpectedly, we observed that mice expressing augmented AIRE/Aire developed muscle-specific autoimmunity associated with incomplete maturation of mTECs together with impaired expression of Aire-dependent TRAs. This led to failure of deletion of autoreactive T cells together with dramatically reduced production of regulatory T cells in the thymus. In peripheral APCs, expression of costimulatory molecules was augmented. We suggest that levels of Aire expression need to be tightly controlled for maintenance of immunological tolerance. Our results also highlight the importance of coordinated action between central tolerance and peripheral tolerance under the common control of Aire
- …