84 research outputs found

    Scanned Probe Oxidation onp-GaAs(100) Surface with an Atomic Force Microscopy

    Get PDF
    Locally anodic oxidation has been performed to fabricate the nanoscale oxide structures onp-GaAs(100) surface, by using an atomic force microscopy (AFM) with the conventional and carbon nanotube (CNT)-attached probes. The results can be utilized to fabricate the oxide nanodots under ambient conditions in noncontact mode. To investigate the conversion of GaAs to oxides, micro-Auger analysis was employed to analyze the chemical compositions. The growth kinetics and the associated mechanism of the oxide nanodots were studied under DC voltages. With the CNT-attached probe the initial growth rate of oxide nanodots is in the order of ~300 nm/s, which is ~15 times larger than that obtained by using the conventional one. The oxide nanodots cease to grow practically as the electric field strength is reduced to the threshold value of ~2 × 107 V cm−1. In addition, results indicate that the height of oxide nanodots is significantly enhanced with an AC voltage for both types of probes. The influence of the AC voltages on controlling the dynamics of the AFM-induced nanooxidation is discussed

    Colocalization of 14-3-3 Proteins with SOD1 in Lewy Body-Like Hyaline Inclusions in Familial Amyotrophic Lateral Sclerosis Cases and the Animal Model

    Get PDF
    Background and Purpose: Cu/Zn superoxide dismutase (SOD1) is a major component of Lewy body-like hyaline inclusion (LBHI) found in the postmortem tissue of SOD1-linked familial amyotrophic lateral sclerosis (FALS) patients. In our recent studies, 14-3-3 proteins have been found in the ubiquitinated inclusions inside the anterior horn cells of spinal cords with sporadic amyotrophic lateral sclerosis (ALS). To further investigate the role of 14-3-3 proteins in ALS, we performed immunohistochemical analysis of 14-3-3 proteins and compared their distributions with those of SOD1 in FALS patients and SOD1-overexpressing mice. Methods: We examined the postmortem brains and the spinal cords of three FALS cases (A4V SOD1 mutant). Transgenic mice expressing the G93A mutant human SOD1 (mutant SOD1-Tg mice), transgenic mice expressing the wild-type human SOD1 (wild-type SOD1-Tg mice), and non-Tg wild-type mice were also subjected to the immunohistochemical analysis. Results: In all the FALS patients, LBHIs were observed in the cytoplasm of the anterior horn cells, and these inclusions were immunopositive intensely for pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma. In the mutant SOD1-Tg mice, a high degree of immunoreactivity for misfolded SOD1 (C4F6) was observed in the cytoplasm, with an even greater degree of immunoreactivity present in the cytoplasmic aggregates of the anterior horn cells in the lumbar spinal cord. Furthermore, we have found increased 14-3-3β\beta and 14-3-3γ\gamma immunoreactivities in the mutant SOD1-Tg mice. Double immunofluorescent staining showed that C4F6 and 14-3-3 proteins were partially co-localized in the spinal cord with FALS and the mutant SOD1-Tg mice. In comparison, the wild-type SOD1-Tg and non-Tg wild-type mice showed no or faint immunoreactivity for C4F6 and 14-3-3 proteins (pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma) in any neuronal compartments. Discussion: These results suggest that 14-3-3 proteins may be associated with the formation of SOD1-containing inclusions, in FALS patients and the mutant SOD1-Tg mice.Mathematic

    A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder frequent at old age characterized by atrophy of the nigrostriatal projection. Overexpression and A53T-mutation of the presynaptic, vesicle-associated chaperone alpha-synuclein are known to cause early-onset autosomal dominant PD. We previously generated mice with transgenic overexpression of human A53T-alpha-synuclein (A53T-SNCA) in dopaminergic substantia nigra neurons as a model of early PD. To elucidate the early and late effects of A53T-alpha-synuclein on the proteome of dopaminergic nerve terminals in the striatum, we now investigated expression profiles of young and old mice using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and mass spectrometry. In total, 15 proteins were upregulated and 2 downregulated. Mice before the onset of motor anomalies showed an upregulation of the spot containing 14-3-3 proteins, in particular the epsilon isoform, as well as altered levels of chaperones, vesicle trafficking and bioenergetics proteins. In old mice, the persistent upregulation of 14-3-3 proteins was aggravated by an increase of glial fibrillary acidic protein (GFAP) suggesting astrogliosis due to initial neurodegeneration. Independent immunoblots corroborated GFAP upregulation and 14-3-3 upregulation for the epsilon isoform, and also detected significant eta and gamma changes. Only for 14-3-3 epsilon a corresponding mRNA increase was observed in midbrain, suggesting it is transcribed in dopaminergic perikarya and accumulates as protein in presynapses, together with A53T-SNCA. 14-3-3 proteins associate with alpha-synuclein in vitro and in pathognomonic Lewy bodies of PD brains. They act as chaperones in signaling, dopamine synthesis and stress response. Thus, their early dysregulation probably reflects a response to alpha-synuclein toxicity

    Numerical Simulation of Collision Process of High Speed Debris against Thin Plate

    No full text
    A collision process of a high speed debris with a spherical or cylindrical shape against a thin plate, which were parts of a satellite and made of an aluminum or its alloy, was numerically simulated based on a thermo-elasto-plastic FEM. In the simulation the effects of strain, strain rate and temperature including the heating effect resulting to melt away of materials were simultaneously considered. The collision of the high speed debrises, with larger than 2000 m/sec, causes melting away of both a debris and a plate. The spalling fracture in bottom side of a plate can be only seen in a collision of relatively slow speed debris.Cet article se concerne avec les calculs numériques utilisant themo-élasto-plastique FEM de la collision dynamic entre des gravats sphériques ou cylindriques à grande vitesse et une planche construite d'aluminium ou d'une de ces alliages et qui représente une partie d'un satellite. Dans les calculs, les effects du strain, strain-rate, et température, aussi bien que le chauffage qui fait fondre les matériaux, ont été considérés. On découvre que les collisions avec des gravats d'une vitesse plus que 2000 m/sec occasionnent le fondrage aussi bien des gravats que de la planche. Par contre, le fracture spalling à la cote derrière de la planche n'est évident qu'avec des collisions des gravats à vitesse relativement base

    Flow stress equation with effect of strain-rate and temperature histories under processing

    No full text
    The effects of strain, strain-rate, temperature on the flow stress variation of some metals are experimentally discussed by using the modified Hopkinson bar type impact testing machine. It is found through the test that flow stress is greatly affected by both histories of temperature and strain rate. In order to obtain a flow stress including the both effects under deformation, a reference stress is proposed. The reference stress is defined as the yield stress under the reference condition. The reference stress is defined by only generalized deformation energy, which is accumulated by plastic deformation and annihilated by annealing. The new practically useful flow-stress equation is proposed, in which the reference stress, strain-rate and temperature but total strain are included. The proposed flow-stress equation is applied to deformation process with varying condition and compared with experimental results

    Comparison of intraocular pressure adjusted by central corneal thickness or corneal biomechanical properties as measured in glaucomatous eyes using noncontact tonometers and the Goldmann applanation tonometer

    No full text
    Kiyoshi Yaoeda,1,2 Atsushi Fukushima,1 Motohiro Shirakashi,3 Takeo Fukuchi2 1Yaoeda Eye Clinic, Nagaoka, 2Division of Ophthalmology and Visual Sciences, Niigata University Graduate School of Medical and Dental Sciences, 3Kido Eye Clinic, Niigata, Japan Purpose: To investigate the correlation coefficients between intraocular pressure (IOP) before and after adjusting for central corneal thickness (CCT) and corneal biomechanical properties. Patients and methods: A total of 218 eyes of 218 patients with primary open-angle glaucoma (mean age =71.5 years; mean spherical equivalent =-0.51 D; mean deviation determined by Humphrey visual field analyzer =-3.22 dB) were included in this study. The tIOP and tIOPCCT, which were adjusted by the CCT (with tIOP meaning IOP not adjusted by CCT, as determined using the CT-1P; and tIOPCCT meaning IOP adjusted by CCT, as determined using the CT-1P), were determined using a noncontact tonometer. The IOPg and IOPCCT, which were adjusted by CCT, and IOPcc adjusted by corneal biomechanical properties were determined using a Reichert 7CR (with IOPg meaning IOP not adjusted by CCT or corneal biomechanical properties, as determined using the Reichert 7CR; IOPCCT meaning IOP adjusted by CCT, as determined using the Reichert 7CR; and IOPcc meaning IOP adjusted by corneal biomechanical properties, as determined using the Reichert 7CR). The GT and GTCCT adjusted by CCT were determined using a Goldmann applanation tonometer (with GT meaning IOP not adjusted by CCT, as determined using the Goldmann applanation tonometer; and with GTCCT meaning IOP adjusted by CCT, as determined using the GAT). Pearson’s correlation coefficients among the IOPs were calculated and compared. P-values <0.05 were considered as statistically significant. Results: The tIOP, tIOPCCT, IOPg, IOPCCT, IOPcc, GT, and GTCCT were 14.8±2.5, 15.0±2.4, 13.1±3.2, 13.3±3.1, 13.7±2.9, 13.2±2.4, and 13.4±2.3 mmHg (mean ± standard deviation), respectively. The correlation coefficient between tIOPCCT and tIOP (r=0.979) was significantly higher than that between tIOPCCT and the other IOPs (r=0.668–0.852; P<0.001, respectively). The correlation coefficient between IOPCCT and IOPg (r=0.994) or IOPcc and IOPg (r=0.892) was significantly higher than that between IOPCCT or IOPcc and the other IOPs (r=0.669–0.740; P<0.001, respectively). The correlation coefficient between GTCCT and GT (r=0.989) was significantly higher than that between GTCCT and the other IOPs (r=0.669–0.740; P<0.001, respectively). Conclusion: The IOP adjusted by CCT or corneal biomechanical properties depends on the measurement instrument itself, rather than the adjustment methods, for eyes of patients with primary open-angle glaucoma. Keywords: ocular response analyzer, corneal biomechanical property, corneal hysteresis, glaucoma, intraocular pressur
    corecore