499 research outputs found

    Multiproxy records of climate variability for Kamchatka for the past 400 years

    Get PDF
    International audienceTree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1?3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records

    Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Get PDF
    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed

    Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    Get PDF
    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC_0). It varies in the range of 10–30 g mol^(−1), depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate

    Response of Temperate, Subtropical and Tropical Soybean Genotypes to Type-B Overflow Tidal Swamp of Indonesia

    Full text link
    Twenty-nine soybean genotypes originating from various countries were evaluated on the tidal swamp of Indonesia to obtain information of agronomic character diversity as the soybean response to the environment and to obtain adaptive genotypes that can be used to develop soybean genotypes for the land. This study was conducted in a complete randomized block design with 3 replications. Diverse genetic backgrounds, countries and climatic regions of the 29 soybean genotypes were responsible for the difference in agronomic responses among the genotypes. All temperate and sub-tropical genotypes were able to produce seeds in the tropical type-B overflow tidal swamp. Adaptability based on seed yield resulted in 1 highly adaptive, 17 adaptive, 5 moderately adaptive and 6 non-adaptive genotypes. Adaptive and highly adaptive genotypes produced 1.56 - 2.58 tons ha-1 of seeds. Karasumame (Naihou), a subtropical genotype, produced the highest seed yield which was 65% higher than Indonesia average soybean productivity and 225% higher than soybean productivity with non-saturated soil culture technology on the tidal swamp. This study concluded that temperate and subtropical genotypes could be used as germplasm sources for soybean development in the tropical type-B overflow tidal swamp in Indonesia

    Competition between water uptake and ice nucleation by glassy organic aerosol particles

    Get PDF
    Berkemeier T, Shiraiwa M, Poeschl U, Koop T. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmospheric Chemistry and Physics. 2014;14(22):12513-12531.Organic aerosol particles play a key role in climate by serving as nuclei for clouds and precipitation. Their sources and composition are highly variable, and their phase state ranges from liquid to solid under atmospheric conditions, affecting the pathway of activation to cloud droplets and ice crystals. Due to slow diffusion of water in the particle phase, organic particles may deviate in phase and morphology from their thermodynamic equilibrium state, hampering the prediction of their influence on cloud formation. We overcome this problem by combining a novel semi-empirical method for estimation of water diffusivity with a kinetic flux model that explicitly treats water diffusion. We estimate timescales for particle deliquescence as well as various ice nucleation pathways for a wide variety of organic substances, including secondary organic aerosol (SOA) from the oxidation of isoprene, alpha-pinene, naphthalene, and dodecane. The simulations show that, in typical atmospheric updrafts, glassy states and solid/liquid core-shell morphologies can persist for long enough that heterogeneous ice nucleation in the deposition and immersion mode can dominate over homogeneous ice nucleation. Such competition depends strongly on ambient temperature and relative humidity as well as humidification rate and particle size. Due to differences in glass transition temperature, hygroscopicity and atomic O/C ratio of the different SOA, naphthalene SOA particles have the highest potential to act as heterogeneous ice nuclei. Our findings demonstrate that kinetic limitations of water diffusion into organic aerosol particles are likely to be encountered under atmospheric conditions and can strongly affect ice nucleation pathways. For the incorporation of ice nucleation by organic aerosol particles into atmospheric models, our results demonstrate a demand for model formalisms that account for the effects of molecular diffusion and not only describe ice nucleation onsets as a function of temperature and relative humidity but also include updraft velocity, particle size and composition

    Modelling dynamics of glaciers in volcanic craters

    Get PDF
    General equations of ice dynamics are re-examined, using scale analysis, in order to derive a simplified thermomechanically coupled model for ice flow and heat transfer in ice caps filling volcanic craters. Relatively large aspect ratios between crater depths and diameters, low surface temperatures and intense volcanic heating are the principal characteristics of such craters. The conventional boundary-layer (shallow-ice) approximation is revised to account for these conditions and, in addition, the variable density of the snow, firn and bubbly ice. Large crater depths and intense bottom melting result in longitudinal balance velocities, controlled by both shear and longitudinal stresses, and hence small surface slopes. In such situations ice can be assumed to be linearly viscous. A flowline model of the glacier dynamics is developed using this assumption. Explicit predictive formulas for ice-particle trajectories and age-depth relations, thus obtained, suggest that the age of ice at the bottom of glaciers in volcanic craters on Kamchatka Peninsula, Russia, may reach hundreds or thousands of years. Ice cores from these glaciers represent unique climatic and volcanic archives

    Multiproxy records of climate variability for Kamchatka for the past 400 years

    Get PDF
    Du Bois du Bais Louis-Thibault. Décret du comité des Secours publics versant une indemnité au citoyen Dunoyer pour sa détention, lors de la séance du 10 brumaire an III (31 octobre 1794). In: Archives Parlementaires de 1787 à 1860 - Première série (1787-1799) Tome C - Du 3 au 18 brumaire an III (24 octobre au 8 novembre 1794) Paris : CNRS éditions, 2000. p. 248
    • …
    corecore