4,228 research outputs found

    (2 + 1) noncommutative gravity and conical spacetimes

    Full text link
    We solve (2+1) noncommutative gravity coupled to point-like sources. We find continuity with Einstein gravity since we recover the classical gravitational field in the θ0\theta \to 0 limit or at large distance from the source. It appears a limitation on the mass which is twice than expected. Since the distance is not gauge invariant, the measure of the deficit angle near the source is intrinsically ambiguous, with the gauge group playing the role of statistical ensemble. Einstein determinism can be recovered only at large distance from the source, compared with the scale of the noncommutative parameter θ\sqrt{\theta}.Comment: 19 pages, LaTeX, no figure

    Interparticle Potential up to Next-to-leading Order for Gravitational, Electrical, and Dilatonic Forces

    Full text link
    Long-range forces up to next-to-leading order are computed in the framework of the Einstein-Maxwell-dilaton system by means of a semiclassical approach to gravity. As has been recently shown, this approach is effective if one of the masses under consideration is significantly greater than all the energies involved in the system. Further, we obtain the condition for the equilibrium of charged masses in the system.Comment: 19 pages, 19 figures, RevTeX4.1. Revised version, Title change

    Quantum Scattering in Two Black Hole Moduli Space

    Full text link
    We discuss the quantum scattering process in the moduli space consisting of two maximally charged dilaton black holes. The black hole moduli space geometry has different structures for arbitrary dimensions and various values of dilaton coupling. We study the quantum effects of the different moduli space geometries with scattering process. Then, it is found that there is a resonance state on certain moduli spaces.Comment: 15 pages, 19 figures, RevTeX 3.

    Stability of the vortex lattice in D-wave superconductors

    Full text link
    Use is made of Onsager's hydrodynamic equation to derive the vibration spectrum of the vortex lattice in d-wave superconductor. In particular the rhombic lattice (i.e. the 4545^\circ tilted square lattice) is found to be stable for B>Hcr(t)B>H_{cr}(t). Here Hcr(t)H_{cr}(t) denotes the critical field at which the vortex lattice transition takes place.Comment: 7 pages, Revte

    Gravitational Effects of Quantum Fields in the Interior of a Cylindrical Black Hole

    Full text link
    The gravitational back-reaction is calculated for the conformally invariant scalar field within a black cosmic string interior with cosmological constant. Using the perturbed metric, the gravitational effects of the quantum field are calculated. It is found that the perturbations initially strengthen the singularity. This effect is similar to the case of spherical symmetry (without cosmological constant). This indicates that the behaviour of quantum effects may be universal and not dependent on the geometry of the spacetime nor the presence of a non-zero cosmological constant.Comment: 13 pages, 1 figure, uses AMS package. D.E. solution corrected. Some qualitative results are change

    Exact Solutions for Boson-Fermion Stars in (2+1) dimensions

    Get PDF
    We solve Einstein equations coupled to a complex scalar field with infinitely large self-interaction, degenerate fermions, and a negative cosmological constant in (2+1)(2+1) dimensions. Exact solutions for static boson-fermion stars are found when circular symmetry is assumed. We find that the minimum binding energy of boson-fermion star takes a negative value if the value of the cosmological constant is sufficiently small.Comment: 19 pages, 5 figures, RevTeX 3.0, second revised versio

    Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in Tl1x_{1-x}Bi1+x_{1+x}Se2_2

    Get PDF
    We report the observation of two-dimensional Shubnikov-de Hass (SdH) oscillations in the topological insulator Tl1x_{1-x}Bi1+x_{1+x}Se2_2. Hall effect measurements exhibited electron-hole inversion in samples with bulk insulating properties. The SdH oscillations accompanying the hole conduction yielded a large surface carrier density of ns=5.1×1012n_{\rm{s}}=5.1 \times10^{12}/cm2^2, with the Landau-level fan diagram exhibiting the π\pi Berry phase. These results showed the electron-hole reversibility around the in-gap Dirac point and the hole conduction on the surface Dirac cone without involving the bulk metallic conduction.Comment: 5 pages, 4 figure

    Noncommutative AdS3AdS^3 with Quantized Cosmological Constant

    Full text link
    We examine a recent deformation of three-dimensional anti-deSitter gravity based on noncommutative Chern-Simons theory with gauge group U(1,1)×U(1,1)U(1,1)\times U(1,1). In addition to a noncommutative analogue of 3D gravity, the theory contains two addition gauge fields which decouple in the commutative limit. It is well known that the level is quantized in noncommutative Chern-Simons theory. Here it implies that the cosmological constant goes like minus one over an integer-squared. We construct the noncommutative AdS3AdS^3 vacuum by applying a Seiberg-Witten map from the commutative case. The procedure is repeated for the case of a conical space resulting from a massive spinning particle.Comment: 16 p
    corecore