374 research outputs found

    Electroweakly-Interacting Dirac Dark Matter

    Full text link
    We consider a class of fermionic dark matter candidates that are charged under both the SU(2)L_L and U(1)Y_Y gauge interactions. In this case a certain amount of dark matter-Higgs couplings, which can split the dark matter into a pair of Majorana fermions, should be present to evade the constraints from the dark matter direct detection experiments. These effects may be probed by means of the dark matter-nucleus scattering via the Higgs-boson exchange process, as well as the electric dipole moments induced by the dark matter and its SU(2)L_L partner fields. In this article, we evaluate them with an effective field approach. It turns out that the constraints coming from the experiments for the quantities have already restricted the dark matter with hypercharge Yβ‰₯3/2Y\geq 3/2. Future experiments have sensitivities to probe this class of dark matter candidates, and may disfavor the Yβ‰₯1Y\geq 1 cases if no signal is observed. In this case, only the Y=0Y=0 and 1/21/2 cases may be the remaining possibilities for the SU(2)L_L charged fermionic dark matter candidates.Comment: 5 pages, 3 figure

    Higgsino Dark Matter in High-Scale Supersymmetry

    Get PDF
    We study a supersymmetric (SUSY) Standard Model in which a Higgsino is light enough to be dark matter, while the other SUSY particles are much heavier than the weak scale. We carefully treat the effects of heavy SUSY particles to the Higgsino nature, especially taking into account the renormalization effects due to the large hierarchy between the Higgsino and the SUSY breaking scales. Inelastic scattering of the Higgsino dark matter with a nucleus is studied, and the constraints on the scattering by the direct detection experiments are discussed. This gives an upper limit on the new physics scale. Bounds on the dark matter-nucleon elastic scattering, the electric dipole moments, and direct production of Higgsinos, on the other hand, give a lower limit. We show the current status on the limits and discuss the future prospects.Comment: 28 pages, 12 figures. Version accepted for publication in JHE

    Testing ATLAS Diboson Excess with Dark Matter Searches at LHC

    Full text link
    The ATLAS collaboration has recently reported a 2.6 sigma excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really originates from the gauge bosons' decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson decay into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.Comment: 10 pages, 2 figures; v2: added references, fixed typos; v3: added some clarifications and figures showing MET distributions, published versio

    Indirect Probe of Electroweak-Interacting Particles with Mono-Lepton Signatures at Hadron Colliders

    Full text link
    Electroweak-interacting massive particles (EWIMPs) exist in a broad class of new physics models beyond the Standard Model. Searching for such particles is one of most primary goal at the LHC and future colliders. The EWIMP generally affects the LHC signatures through quantum corrections even without direct productions. By measuring the Standard Model processes precisely, we can indirectly probe the EWIMPs. In this paper, we study the current constraint and future prospect of the EWIMPs by using the precision measurements of mono-lepton production from the charged Drell-Yan processes at hadron colliders. We found the mono-lepton signature can be a better probe than dilepton signature from the neutral Drell-Yan processes.Comment: 10 pages, 7 figure

    Probing Bino-Wino Coannihilation at the LHC

    Get PDF
    We study bino-wino coannihilation scenario in the so-called spread or mini-split supersymmetry. We show that, in this model, a neutral wino has a macroscopic decay length in a wide range of parameter space. This characteristic feature could be observed as a displaced vertex plus missing transverse energy event at the LHC. In this paper, we study the current constraints and future prospects on the scenario based on the displaced vertex search performed by the ATLAS collaboration. It is found that a sizable parameter region can be probed at the 8 TeV LHC run. This search strategy will considerably extend its reach at the next stage of the LHC running, and thus play a crucial role to examine a possibility of bino dark matter in the mini-split type supersymmetric models.Comment: 21 pages, 7 figures; version accepted for publication in JHE
    • …
    corecore