93 research outputs found

    Antiangiogenic Therapy for Patients with Recurrent and Newly Diagnosed Malignant Gliomas

    Get PDF
    Malignant gliomas have a poor prognosis despite advances in diagnosis and therapy. Although postoperative temozolomide and radiotherapy improve overall survival in glioblastoma patients, most patients experience a recurrence. The prognosis of recurrent malignant gliomas is dismal, and more effective therapeutic strategies are clearly needed. Antiangiogenesis is currently considered an attractive targeting therapy for malignant gliomas due to its important role in tumor growth. Clinical trials using bevacizumab have been performed for recurrent glioblastoma, and these studies have shown promising response rates along with progression-free survival. Based on the encouraging results, bevacizumab was approved by the FDA for the treatment of recurrent glioblastoma. In addition, bevacizumab has shown to be effective for recurrent anaplastic gliomas. Large phase III studies are currently ongoing to demonstrate the efficacy and safety of the addition of bevacizumab to temozolomide and radiotherapy for newly diagnosed glioblastoma. In contrast, several other antiangiogenic drugs have also been used in clinical trials. However, previous studies have not shown whether antiangiogenesis improves the overall survival of malignant gliomas. Specific severe side effects, difficult assessment of response, and lack of rational predictive markers are challenging problems. Further studies are warranted to establish the optimized antiangiogenesis therapy for malignant gliomas

    Novel Therapies in Glioblastoma

    Get PDF
    Conventional treatment of glioblastoma has advanced only incrementally in the last 30 years and still yields poor outcomes. The current strategy of surgery, radiation, and chemotherapy has increased median survival to approximately 15 months. With the advent of molecular biology and consequent improved understanding of basic tumor biology, targeted therapies have become cornerstones for cancer treatment. Many pathways (RTKs, PI3K/AKT/mTOR, angiogenesis, etc.) have been identified in GBM as playing major roles in tumorigenesis, treatment resistance, or natural history of disease. Despite the growing understanding of the complex networks regulating GBM tumors, many targeted therapies have fallen short of expectations. In this paper, we will discuss novel therapies and the successes and failures that have occurred. One clear message is that monotherapies yield minor results, likely due to functionally redundant pathways. A better understanding of underlying tumor biology may yield insights into optimal targeting strategies which could improve the overall therapeutic ratio of conventional treatments

    Use of FDG-PET in Radiation Treatment Planning for Thoracic Cancers

    Get PDF
    Radiotherapy plays an important role in the treatment for thoracic cancers. Accurate diagnosis is essential to correctly perform curative radiotherapy. Tumor delineation is also important to prevent geographic misses in radiotherapy planning. Currently, planning is based on computed tomography (CT) imaging when radiation oncologists manually contour the tumor, and this practice often induces interobserver variability. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been reported to enable accurate staging and detect tumor extension in several thoracic cancers, such as lung cancer and esophageal cancer. FDG-PET imaging has many potential advantages in radiotherapy planning for these cancers, because it can add biological information to conventional anatomical images and decrease the inter-observer variability. FDG-PET improves radiotherapy volume and enables dose escalation without causing severe side effects, especially in lung cancer patients. The main advantage of FDG-PET for esophageal cancer patients is the detection of unrecognized lymph node or distal metastases. However, automatic delineation by FDG-PET is still controversial in these tumors, despite the initial expectations. We will review the role of FDG-PET in radiotherapy for thoracic cancers, including lung cancer and esophageal cancer

    Prospective Study of Isolated Recurrent Tumor Re-irradiation With Carbon-Ion Beams

    Get PDF
    Purpose: To perform a prospective study to evaluate the efficacy and safety of isolated recurrent tumor re-irradiation with carbon-ion radiotherapy (RT).Methods and Materials: The inclusion criteria were clinically proven recurrent tumors, measurable by computed tomography or magnetic resonance imaging, patients ≥ 16 years old, performance status scores between 0 and 2, isolated tumor at a previously irradiated site, and a life expectancy > 6 months. The exclusion criteria were tumor invasion into the gastrointestinal tract or a major blood vessel, uncontrolled infection, early recurrence (<3 months), and severe concomitant diseases. The primary end-point was the local control rate, the secondary end-points including the overall survival rate, and adverse events.Results: Between December 2013 and March 2016, 22 patients were enrolled in this prospective study. All patients were re-irradiated with carbon-ion RT with radical intent. Five patients had rectal cancer, 4 had sarcoma, 4 had lung cancer, 3 had hepatic cell carcinoma, and 6 had other tumors. The median follow-up time was 26 months. Eight patients developed local recurrence, and the 1- and 2-year local control rates were 71 and 60%, respectively. Eight patients died of their cancers and 2 died of other diseases. The 1- and 2-year overall survival rates were 76 and 67%, respectively. There were no grade 2 or higher acute adverse events and 4 patients (18%) developed grade 3 late adverse events. The group with the longer interval (>16 months) between the first RT and re-irradiation had significantly better outcomes than the shorter interval group (≤ 16 months).Conclusions: Re-irradiation, using carbon-ion RT with radical intent, had favorable local control and overall survival rates without severe toxicities for selected patients. Re-irradiation has the potential to improve clinical outcomes for isolated, local, recurrent tumors; further investigations are required to confirm the therapeutic efficacy

    Radiation Myelopathy Caused by Palliative Radiotherapy and Intrathecal Methotrexate

    Get PDF
    Radiation myelopathy is a rare, late-stage adverse event that develops following irradiation at or above 50 Gy. Here, we report a case of irreversible paraplegia caused by palliative radiation (20 Gy in 5 fractions) to the spinal cord combined with intrathecal methotrexate (IT-MTX). A 69-year-old man presented with back pain, prompting a diagnosis of acute myeloid leukemia. At the first visit, he complained of muscle weakness and hypoesthesia in both legs; spinal magnetic resonance imaging (MRI) revealed an epidural mass compressing the spinal cord at the fifth to seventh level of the thoracic vertebrae. This was considered to be an extramedullary lesion of leukemia, and he received remission induction therapy including IT-MTX; palliative radiation (20 Gy in 5 fractions) of the epidural mass was initiated the following day. Then, during the course of consolidation therapy, a second IT-MTX was performed after 1 month and a third after 3 months. While the consolidation therapy was complete, yielding remission, he developed sudden paraplegia, as well as bladder and bowel dysfunction (BBD), 10 months later. Spinal MRI showed extensive intramedullary high signal intensity on T2-weighted image, including the irradiation field. It was thought myelopathy was due to irradiation of the spinal cord combined with IT-MTX. He immediately received steroid pulse therapy; however, the paraplegia and BBD did not improve. It is extremely rare for irreversible radiation myelopathy to occur with IT-MTX and palliative radiation to the spinal cord. We believe that even with low-dose palliative radiation, caution is required for combined use with IT-MTX

    Chemical Characterization of a Volatile Dubnium Compound, DbOCl3

    Get PDF
    The formation and the chemical characterization of single atoms of dubnium (Db, element 105), in the form of its volatile oxychloride, was investigated using the on-line gas phase chromatography technique, in the temperature range 350–600 °C. Under the exactly same chemical conditions, comparative studies with the lighter homologues of Group 5 in the Periodic Table clearly indicate the volatility sequence being NbOCl3 > TaOCl3 ≥ DbOCl3. From the obtained experimental results, thermochemical data for DbOCl3 were derived. The present study delivers reliable experimental information for theoretical calculations on chemical properties of transactinides

    10 Clinical Results of Carbon-Ion Radiotherapy for Lung Cancer

    No full text

    Antiangiogenic Therapy for Patients with Recurrent and Newly Diagnosed Malignant Gliomas

    No full text
    Malignant gliomas have a poor prognosis despite advances in diagnosis and therapy. Although postoperative temozolomide and radiotherapy improve overall survival in glioblastoma patients, most patients experience a recurrence. The prognosis of recurrent malignant gliomas is dismal, and more effective therapeutic strategies are clearly needed. Antiangiogenesis is currently considered an attractive targeting therapy for malignant gliomas due to its important role in tumor growth. Clinical trials using bevacizumab have been performed for recurrent glioblastoma, and these studies have shown promising response rates along with progressionfree survival. Based on the encouraging results, bevacizumab was approved by the FDA for the treatment of recurrent glioblastoma. In addition, bevacizumab has shown to be effective for recurrent anaplastic gliomas. Large phase III studies are currently ongoing to demonstrate the efficacy and safety of the addition of bevacizumab to temozolomide and radiotherapy for newly diagnosed glioblastoma. In contrast, several other antiangiogenic drugs have also been used in clinical trials. However, previous studies have not shown whether antiangiogenesis improves the overall survival of malignant gliomas. Specific severe side effects, difficult assessment of response, and lack of rational predictive markers are challenging problems. Further studies are warranted to establish the optimized antiangiogenesis therapy for malignant gliomas
    corecore