352 research outputs found
Microwave Absorption of Surface-State Electrons on Liquid He
We have investigated the intersubband transitions of surface state electrons
(SSE) on liquid He induced by microwave radiation at temperatures from 1.1
K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the
density of He vapor atoms. This proportionality is explained well by Ando's
theory, in which the linewidth is determined by the electron - vapor atom
scattering. However, the linewidth is larger than the calculation by a factor
of 2.1. This discrepancy strongly suggests that the theory underestimates the
electron - vapor atom scattering rate. At lower temperatures, the absorption
spectrum splits into several peaks. The multiple peak structure is partly
attributed to the spatial inhomogeneity of the static holding electric field
perpendicular to the electron sheet.Comment: 15 pages, 7 figures, submitted to J. Phys. Soc. Jp
Superfluidity of He Confined in Nano-Porous Media
We have examined superfluid properties of He confined to a nano-porous
Gelsil glass that has nanopores 2.5 nm in diameter. The pressure-temperature
phase diagram was determined by torsional oscillator, heat capacity and
pressure studies. The superfluid transition temperature
approaches zero at 3.4 MPa, indicating a novel "quantum" superfluid transition.
By heat capacity measurements, the nonsuperfluid phase adjacent to the
superfluid and solid phases is identified to be a nanometer-scale, localized
Bose condensation state, in which global phase coherence is destroyed. At high
pressures, the superfluid density has a -linear term, and is
proportional to the zero-temperature superfluid density. These results strongly
suggest that phase fluctuations in the superfluid order parameter play a
dominant role on the phase diagram and superfluid properties.Comment: 6 Pages, 6 Figures, Submitted to "Helium: 100 years", Special Issue
of Low Temperature Physic
Superfluidity of ⁴He confined in nanoporous media
We have examined superfluid properties of ⁴He confined to a nanoporous Gelsil glass that has nanopores
2.5 nm in diameter. The pressure–temperature phase diagram was determined by torsional oscillator, heat
capacity and pressure studies. The superfluid transition temperature Tc approaches zero at 3.4 MPa, indicating
a novel quantum superfluid transition. By heat capacity measurements, the nonsuperfluid phase adjacent
to the superfluid and solid phases is identified to be a nanometer-scale, localized Bose condensation state, in
which global phase coherence is destroyed. At high pressures, the superfluid density has a T-linear term, and
Tc is proportional to the zero-temperature superfluid density. These results strongly suggest that phase fluctuations
in the superfluid order parameter play a dominant role on the phase diagram and superfluid properties
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Annealing Effect for Supersolid Fraction in He
We report on experimental confirmation of the non-classical rotational
inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The
onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for
initiation of the NCRI suppression is estimated to be ~10 m/sec. After an
additional annealing of the sample at K for 12 hours, ~ 10% relative
increase of NCRI fraction was observed. Then after repeated annealing with the
same conditions, the NCRI fraction was saturated. It differs from Reppy's
observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings
Binding of molecules to DNA and other semiflexible polymers
A theory is presented for the binding of small molecules such as surfactants
to semiflexible polymers. The persistence length is assumed to be large
compared to the monomer size but much smaller than the total chain length. Such
polymers (e.g. DNA) represent an intermediate case between flexible polymers
and stiff, rod-like ones, whose association with small molecules was previously
studied. The chains are not flexible enough to actively participate in the
self-assembly, yet their fluctuations induce long-range attractive interactions
between bound molecules. In cases where the binding significantly affects the
local chain stiffness, those interactions lead to a very sharp, cooperative
association. This scenario is of relevance to the association of DNA with
surfactants and compact proteins such as RecA. External tension exerted on the
chain is found to significantly modify the binding by suppressing the
fluctuation-induced interaction.Comment: 15 pages, 7 figures, RevTex, the published versio
Preliminary evidence of dual-marked lymphocytes in thoracic duct lymph fluid
Thoracic duct lymphocytes from patients receiving thoracic duct drainage as a pretransplant therapy were examined for cell surface markers. Patients followed over the drainage time period showed a variable but decreasing percentage of E-rosette-positive cells in the lymph fluid. A substantial percentage of these E-rosette-positive cells also had C3 receptors on their cell surface. Reactions of the whole lymphocytes with a heteroantisera to human B-lymphocyte antigens reflected the increasing proportion of B cells in the sample, but also indicated that a fraction of the T cells have Ia-like antigens on their surface. Some cells may have all 3 surface marker characteristics. Significance of these cells with respect to graft survival is discussed
Study of Kosterlitz-Thouless transition of Bose systems governed by a random potential using quantum Monte Carlo simulations
We perform quantum Monte Carlo simulations to study the 2D hard-core
Bose-Hubbard model in a random potential. Our motivation is to investigate the
effects of randomness on the Kosterlitz--Thouless (KT) transition. The chemical
potential is assumed to be random, by site, with a Gaussian distribution. The
KT transition is confirmed by a finite-size analysis of the superfluid density
and the power-law decay of the correlation function. By varying the variance of
the Gaussian distribution, we find that the transition temperature decreases as
the variance increases. We obtain the phase diagram showing the superfluid and
disordered phases, and estimate the quantum critical point (QCP). Our results
on the ground state reveal the existence of the Bose glass phase. Finally, we
discuss what the value of the variance at the QCP indicates from the viewpoint
of percolation.Comment: 7 pages, 9 figures, accepted for publication in JPS
- …