17 research outputs found

    Multifactor complex containing B element binding factor, BBF, and repressors regulate the human alpha 1(III) collagen gene (COL3A1).

    Get PDF
    Type III collagen is found in fetal skin and blood vessels. Previously, we characterized the proximal promoter of the human alpha1(III) collagen gene (COL3A1) using the human rhabdomyosarcoma cell line, A204, and NIH3T3 cells (Yoshino et al., Biochim Biophys Acta, 2005). In the present study, we further analyzed this promoter using additional cell lines, namely a human embryonal rhabdomyosarcoma cell line (RD) and bovine vascular smooth muscle cells (vSMCs), both of which show high expression of type III collagen. Using a luciferase assay, electrophoretic mobility shift assays (EMSA), and DNase footprinting assay, 2 types of multifactor complexes were shown to bind to the DNA region in the vicinity of the B element (- 80 to - 58), depending on the cell type. Next, we used cells stably transfected with a GFP-linked type III collagen promoter fragment for analysis of promoter expression. Usually, transfected cells retained the characteristics of the original cells. However, in several clones derived from RD cells, promoter expression as well as cell shape changed to patterns characteristic of the A204 cell line. Nuclear factors expressed by these clones were also characteristic of the A204 line.</p

    Predicting Directions of Changes in Genotype Proportions Between Norovirus Seasons in Japan

    Get PDF
    The norovirus forecasting system (NOROCAST) has been developed for predicting directions of changes in genotype proportions between human norovirus (HuNoV) seasons in Japan through modeling herd immunity to structural protein 1 (VP1). Here 404 nearly complete genomic sequences of HuNoV were analyzed to examine whether the performance of NOROCAST could be improved by modeling herd immunity to VP2 and non-structural proteins (NS) in addition to VP1. It was found that the applicability of NOROCAST may be extended by compensating for unavailable sequence data and observed genotype proportions of 0 in each season. Incorporation of herd immunity to VP2 and NS did not appear to improve the performance of NOROCAST, suggesting that VP1 may be a suitable target of vaccines

    The Association Between Documentation of Koplik Spots and Laboratory Diagnosis of Measles and Other Rash Diseases in a National Measles Surveillance Program in Japan

    Get PDF
    Koplik spots are considered a disease-specific sign for measles, although comprehensive virological studies have not been conducted to date. In Japan, a national survey of 3023 measles and measles-suspected cases was conducted between 2009 and 2014 using polymerase chain reaction (PCR) or reverse transcription PCR (RT-PCR) to detect various rash/fever-associated viruses. Koplik spots were observed in 717 of 3023 cases (23.7%). Among these, the measles virus was detected in 202 cases (28.2%), while the rubella virus was detected in 125 cases (17.4%). Other viruses were detected in 51 cases having the spots (7.1%). In some of the cases with spots, two or three viruses, such as the rubella virus, parvovirus, and human herpesvirus type 6 were also detected. The sensitivity and specificity of Koplik spots as a diagnostic marker for measles were 48 and 80%, respectively. The results suggested that Koplik spots might appear not only in measles but also in other viral infections, such as rubella, as a clinical sign

    Dissemination and genetic analysis of the stealthy vanB gene clusters of Enterococcus faecium clinical isolates in Japan

    No full text
    Abstract Background VanB-type vancomycin (VAN) resistance gene clusters confer VAN resistances on Enterococcus spp. over a wide range of MIC levels (MIC = 4–1000 mg/L). However, the epidemiology and the molecular characteristics of the VAN susceptible VanB-type Enterococcus still remain unclear. Results We characterized 19 isolates of VanB-type Enterococcus faecium that might colonize in the gut and were not phenotypically resistant to VAN (MIC = 3 mg/L). They were obtained from two hospitals in Japan between 2009 and 2010. These isolates had the identical vanB gene cluster and showed same multilocus sequence typing (MLST) (ST78) and the highly related profiles in pulsed-field gel electrophoresis (PFGE). The vanB gene cluster was located on a plasmid, and was transferable to E. faecium and E. faecalis. Notably, from these VanB-type VREs, VAN resistant (MIC≥16 mg/L) mutants could appear at a frequency of 10− 6–10− 7/parent cell in vitro. Most of these revertants acquired mutations in the vanS B gene, while the remainder of the revertants might have other mutations outside of the vanB gene cluster. All of the revertants we tested showed increases in the VAN-dependent expression of the vanB gene cluster, suggesting that the mutations affected the transcriptional activity and increased the VAN resistance. Targeted mutagenesis revealed that three unique nucleotide substitutions in the vanB gene cluster of these strains attenuated VAN resistance. Conclusions In summary, this study indicated that stealthy VanB-type E. faecium strains that have the potential ability to become resistance to VAN could exist in clinical settings
    corecore