36 research outputs found

    Study of dynamic plastic buckling of cylindrical shell impacted by sudden constant load

    Get PDF
      &nbsp

    A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    No full text
    In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz) with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation) is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V

    Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    No full text
    In this paper, performances of vibration energy harvester combined piezoelectric (PE) and electromagnetic (EM) mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it’s found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power

    Electret Length Optimization of Output Power for Double-End Fixed Beam Out-of-Plane Electret-Based Vibration Energy Harvesters

    No full text
    Thanks to miniaturization, it is now possible to imagine self-powered systems that can harvest energy from the environment to produce electrical energy. Out-of-plane electret-based vibration energy harvesters (E-EVHs) are an effective and inexpensive energy harvester type that has attracted much attention. Increasing the capacitance of variable capacitors is an effective way to improve the output power of E-EVHs. In this paper, firstly an accurate capacitance theoretical model of a double-ended fixed beam out-of-plane E-EVHs which has 97% reliability compared with FEM (COMSOL Multiphysics) results is presented. A comparison of capacitance between the double-ended fixed beam structure and a cantilever structure of the same size indicates that the double-ended fixed beam structure has greater capacitance and capacitance variation. We apply this theoretical capacitance model to the mechanical-electrical coupling model of double-ended fixed beam out-of-plane E-EVHs and study harvesters’ output performances for different electret lengths by numerical and experimental method, respectively. There exists an optimal electret length to harvest maximum power in our simulation results. Enhanced electrostatic forces with increasing the electret length emphasizes the soft spring effect, which widens the half power bandwidth and lowers the resonance frequency. Increasing the length of the electret can reduce the resistance of the optimum load. The experimental results show trend consistent with the numerical predictions. The maximum output power can reach 404 µW (134.66 µW/cm2/g) at the electret length of 40 mm when the external acceleration and the frequency were 5 m/s2 and 74 Hz, respectively. The maximum bandwidth reaches 2.5 Hz at the electret length of 60 mm. Therefore, the electret length should be placed between 40 mm and 60 mm, while ensuring a higher output power and also get a larger bandwidth in practical applications

    Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleeve

    No full text
    Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleev

    Study of Intrinsic Dissipation Due to Thermoelastic Coupling in Gyroscope Resonators

    No full text
    This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM) simulation results. Also, the comparison of vibration field quantities is made to investigate the effect of different conditions on resonator thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality factor are subsequently deduced to analyze the energy dissipation situation in the vibration process. Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model and numerical results. By comparing with the experimental quality factor, the numerical values are validated. The combination of the theoretical expressions, numerical results and experimental data leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely, that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and the quality factor varies under different vibration modes. The results demonstrate that the critical geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study

    Nonlinear Hybrid Piezoelectric and Electromagnetic Energy Harvesting Driven by Colored Excitation

    No full text
    It is well known that when excited by a stochastic base acceleration, the power absorbed by a nonlinear Duffing-type piezoelectric (PE) or electromagnetic (EM) energy harvester might not be increased effectively compared to a linear one. When intentionally introducing nonlinear magnetic forces into a doubly-clamped hybrid PE and EM energy harvester subjected to narrow-band (colored) excitation however, the power output could be improved to a much higher value. Also, in comparison with the typical nonlinear PE or EM generator, the influence of load and excitation parameters on the performance of a nonlinear hybrid energy harvester under colored excitation has been proven rather different as well. These results are derived analytically by solving the Fokker-Planck (FP) equation, and numerically by Monte Carlo (MC) simulations for validation. Besides, for a nonlinear hybrid configuration excited by colored noise approaching white Gaussian excitation, theoretical output characteristics are discussed and compared with results from a reported theory for white Gaussian excited case, which again verifies the feasibility of the theoretical analysis

    Study on the Output Performance of a Nonlinear Hybrid Piezoelectric-Electromagnetic Harvester under Harmonic Excitation

    No full text
    The nonlinear energy harvester has become a hot topic due to its broad bandwidth and lower resonant frequency. Based on the preliminary test and analyses in our previous work, further analyses and tests on the influence of parameters, including the nonlinear magnetic force of the hybrid energy harvesting structure on its output performance under harmonic excitation, are performed in this paper, which will provide powerful support for structural optimization. For designing a nonlinear piezoelectric-electromagnetic hybrid energy harvester, the state equation of electromechanical coupling, the harmonic response and average output power, voltage, and current of a nonlinear hybrid energy harvester under harmonic excitation are derived by the harmonic balance method. The effects of the excitation acceleration and the external load on the output performance of the nonlinear hybrid energy harvester are verified through experimental tests. The results showed that the output power of the nonlinear hybrid energy harvester increases with the increase in the acceleration of harmonic excitation, and the increase is affected by external load. When the piezoelectric-electromagnetic hybrid harvester operates at the optimal load and the resonant frequency, the average output power reaches its maximum value and the increase of the load of the piezoelectric unit makes the resonant frequency of the energy harvesting system increase. Compared with linear harvesting structures, the nonlinear hybrid harvester has better flexibility of environmental adaptability and is more suitable for harvesting energy in low-frequency environments
    corecore