313 research outputs found

    A Comparative study of Chinese and American address terms

    Full text link
    In cross-cultural situations, choices of address terms often reflect cultural differences. Although a good number of studies have discussed address terms in mono-linguistic settings, literature directly related to cross-cultural address terms is scarce. The current study intends to investigate common forms of address terms in Chinese and American cultures. Two hypotheses are examined: 1) Differences between Americans and Chinese in their choices of address terms are governed by cultural norms such as politeness, as well as by contexts or styles, and 2) The Chinese students in the U.S., who are undergoing the process of assimilation and acculturation, tend to accommodate the American culture and be more like the Americans in their choices of address terms. Twenty-seven American and 24 Chinese subjects completed a 12-item survey. Data was analyzed by descriptive statistics and visual presentations and through the Kolmogorov-Smimov tests of population difference. The results indicate that while most American respondents tend to use either first name or no name in most informal settings or status conscious settings, Chinese respondents under the context in China would use more diversified choices. In addition, acculturation plays a role in Chinese respondents’ language change in terms of the choices of address terms. The relationship between age and the choice of address terms is also discussed

    Pedestrian Attribute Editing for Gait Recognition and Anonymization

    Full text link
    As a kind of biometrics, the gait information of pedestrians has attracted widespread attention from both industry and academia since it can be acquired from long distances without the cooperation of targets. In recent literature, this line of research has brought exciting chances along with alarming challenges: On the positive side, gait recognition used for security applications such as suspect retrieval and safety checks is becoming more and more promising. On the negative side, the misuse of gait information may lead to privacy concerns, as lawbreakers can track subjects of interest using gait characteristics even under face-masked and clothes-changed scenarios. To handle this double-edged sword, we propose a gait attribute editing framework termed GaitEditor. It can perform various degrees of attribute edits on real gait sequences while maintaining the visual authenticity, respectively used for gait data augmentation and de-identification, thereby adaptively enhancing or degrading gait recognition performance according to users' intentions. Experimentally, we conduct a comprehensive evaluation under both gait recognition and anonymization protocols on three widely used gait benchmarks. Numerous results illustrate that the adaptable utilization of GaitEditor efficiently improves gait recognition performance and generates vivid visualizations with de-identification to protect human privacy. To the best of our knowledge, GaitEditor is the first framework capable of editing multiple gait attributes while simultaneously benefiting gait recognition and gait anonymization. The source code of GaitEditor will be available at https://github.com/ShiqiYu/OpenGait

    Learning Gait Representation from Massive Unlabelled Walking Videos: A Benchmark

    Full text link
    Gait depicts individuals' unique and distinguishing walking patterns and has become one of the most promising biometric features for human identification. As a fine-grained recognition task, gait recognition is easily affected by many factors and usually requires a large amount of completely annotated data that is costly and insatiable. This paper proposes a large-scale self-supervised benchmark for gait recognition with contrastive learning, aiming to learn the general gait representation from massive unlabelled walking videos for practical applications via offering informative walking priors and diverse real-world variations. Specifically, we collect a large-scale unlabelled gait dataset GaitLU-1M consisting of 1.02M walking sequences and propose a conceptually simple yet empirically powerful baseline model GaitSSB. Experimentally, we evaluate the pre-trained model on four widely-used gait benchmarks, CASIA-B, OU-MVLP, GREW and Gait3D with or without transfer learning. The unsupervised results are comparable to or even better than the early model-based and GEI-based methods. After transfer learning, our method outperforms existing methods by a large margin in most cases. Theoretically, we discuss the critical issues for gait-specific contrastive framework and present some insights for further study. As far as we know, GaitLU-1M is the first large-scale unlabelled gait dataset, and GaitSSB is the first method that achieves remarkable unsupervised results on the aforementioned benchmarks. The source code of GaitSSB will be integrated into OpenGait which is available at https://github.com/ShiqiYu/OpenGait

    SkeletonGait: Gait Recognition Using Skeleton Maps

    Full text link
    The choice of the representations is essential for deep gait recognition methods. The binary silhouettes and skeletal coordinates are two dominant representations in recent literature, achieving remarkable advances in many scenarios. However, inherent challenges remain, in which silhouettes are not always guaranteed in unconstrained scenes, and structural cues have not been fully utilized from skeletons. In this paper, we introduce a novel skeletal gait representation named skeleton map, together with SkeletonGait, a skeleton-based method to exploit structural information from human skeleton maps. Specifically, the skeleton map represents the coordinates of human joints as a heatmap with Gaussian approximation, exhibiting a silhouette-like image devoid of exact body structure. Beyond achieving state-of-the-art performances over five popular gait datasets, more importantly, SkeletonGait uncovers novel insights about how important structural features are in describing gait and when they play a role. Furthermore, we propose a multi-branch architecture, named SkeletonGait++, to make use of complementary features from both skeletons and silhouettes. Experiments indicate that SkeletonGait++ outperforms existing state-of-the-art methods by a significant margin in various scenarios. For instance, it achieves an impressive rank-1 accuracy of over 85% on the challenging GREW dataset. All the source code is available at https://github.com/ShiqiYu/OpenGait

    A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI

    Full text link
    Diffusion probabilistic models (DPMs) which employ explicit likelihood characterization and a gradual sampling process to synthesize data, have gained increasing research interest. Despite their huge computational burdens due to the large number of steps involved during sampling, DPMs are widely appreciated in various medical imaging tasks for their high-quality and diversity of generation. Magnetic resonance imaging (MRI) is an important medical imaging modality with excellent soft tissue contrast and superb spatial resolution, which possesses unique opportunities for DPMs. Although there is a recent surge of studies exploring DPMs in MRI, a survey paper of DPMs specifically designed for MRI applications is still lacking. This review article aims to help researchers in the MRI community to grasp the advances of DPMs in different applications. We first introduce the theory of two dominant kinds of DPMs, categorized according to whether the diffusion time step is discrete or continuous, and then provide a comprehensive review of emerging DPMs in MRI, including reconstruction, image generation, image translation, segmentation, anomaly detection, and further research topics. Finally, we discuss the general limitations as well as limitations specific to the MRI tasks of DPMs and point out potential areas that are worth further exploration

    Cross-Covariate Gait Recognition: A Benchmark

    Full text link
    Gait datasets are essential for gait research. However, this paper observes that present benchmarks, whether conventional constrained or emerging real-world datasets, fall short regarding covariate diversity. To bridge this gap, we undertake an arduous 20-month effort to collect a cross-covariate gait recognition (CCGR) dataset. The CCGR dataset has 970 subjects and about 1.6 million sequences; almost every subject has 33 views and 53 different covariates. Compared to existing datasets, CCGR has both population and individual-level diversity. In addition, the views and covariates are well labeled, enabling the analysis of the effects of different factors. CCGR provides multiple types of gait data, including RGB, parsing, silhouette, and pose, offering researchers a comprehensive resource for exploration. In order to delve deeper into addressing cross-covariate gait recognition, we propose parsing-based gait recognition (ParsingGait) by utilizing the newly proposed parsing data. We have conducted extensive experiments. Our main results show: 1) Cross-covariate emerges as a pivotal challenge for practical applications of gait recognition. 2) ParsingGait demonstrates remarkable potential for further advancement. 3) Alarmingly, existing SOTA methods achieve less than 43% accuracy on the CCGR, highlighting the urgency of exploring cross-covariate gait recognition. Link: https://github.com/ShinanZou/CCGR.Comment: AAAI202
    • …
    corecore