18 research outputs found

    Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere

    Full text link
    We demonstrate that LFRic-Atmosphere, a model built using the Met Office's GungHo dynamical core, is able to reproduce idealised large-scale atmospheric circulation patterns specified by several widely-used benchmark recipes. This is motivated by the rapid rate of exoplanet discovery and the ever-growing need for numerical modelling and characterisation of their atmospheres. Here we present LFRic-Atmosphere's results for the idealised tests imitating circulation regimes commonly used in the exoplanet modelling community. The benchmarks include three analytic forcing cases: the standard Held-Suarez test, the Menou-Rauscher Earth-like test, and the Merlis-Schneider Tidally Locked Earth test. Qualitatively, LFRic-Atmosphere agrees well with other numerical models and shows excellent conservation properties in terms of total mass, angular momentum and kinetic energy. We then use LFRic-Atmosphere with a more realistic representation of physical processes (radiation, subgrid-scale mixing, convection, clouds) by configuring it for the four TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) scenarios. This is the first application of LFRic-Atmosphere to a possible climate of a confirmed terrestrial exoplanet. LFRic-Atmosphere reproduces the THAI scenarios within the spread of the existing models across a range of key climatic variables. Our work shows that LFRic-Atmosphere performs well in the seven benchmark tests for terrestrial atmospheres, justifying its use in future exoplanet climate studies.Comment: 34 pages, 9(12) figures; Submitted to Geoscientific Model Development; Comments are welcome (see Discussion tab on the journal's website: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-647

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model

    Get PDF
    Aerosols are known to significantly affect cloud and precipitation patterns and intensity, but these interactions are ignored or very simplistically handled in climate and numerical weather-prediction (NWP) models. A suite of one-way nested Met Office Unified Model (UM) runs, with a single-moment bulk microphysics scheme was used to study two convective cases with contrasting characteristics observed in southern England. The autoconversion process that converts cloud water to rain is directly controlled by the assumed droplet number. The impact of changing cloud droplet number concentration (CDNC) on cloud and precipitation evolution can be inferred through changes to the autoconversion rate. This was done for a range of resolutions ranging from regional NWP (1 km) to high resolution (up to 100 m grid spacing) to evaluate the uncertainties due to changing CDNC as a function of horizontal grid resolution. The first case is characterised by moderately intense convective showers forming below an upper-level potential vorticity anomaly, with a low freezing level. The second case, characterised by one persistent stronger storm, is warmer with a deeper boundary layer. The colder case is almost insensitive to even large changes in CDNC, while in the warmer case a change of a factor of 3 in assumed CDNC affects total surface rain rate by ~17%. In both cases the sensitivity to CDNC is similar at all grid spacings <1 km. The contrasting sensitivities of these cases are induced by their contrasting ice-phase proportion. The ice processes in this model damp the precipitation sensitivity to CDNC. For this model the convection is sensitive to CDNC when the accretion process is more significant than the melting process and vice versa

    Evaluation of cloud‐resolving and limited area model intercomparison simulations using TWP‐ICE observations: 1. Deep convective updraft properties

    No full text
    International audienceTen 3‐D cloud‐resolving model simulations and four 3‐D limited area model simulations of an intense mesoscale convective system observed on 23–24 January 2006 during the Tropical Warm Pool‐International Cloud Experiment (TWP‐ICE) are compared with each other and with observed radar reflectivity fields and dual‐Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high‐bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Making snow mass more realistically proportional to D 2 rather than D 3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual‐Doppler‐retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (presquall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 m slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and large‐scale model forcing that promote different convective strengths than observed

    Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations

    No full text
    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region

    Aerosol Midlatitude Cyclone Indirect Effects in Observations and High-Resolution Simulations

    No full text
    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm(exp -2) in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60% of the observed variability in CLWP can be explained by CDNC and WCB moisture flux
    corecore