1,128 research outputs found

    Fermion masses in noncommutative geometry

    Get PDF
    Recent indications of neutrino oscillations raise the question of the possibility of incorporating massive neutrinos in the formulation of the Standard Model (SM) within noncommutative geometry (NCG). We find that the NCG requirement of Poincare duality constrains the numbers of massless quarks and neutrinos to be unequal unless new fermions are introduced. Possible scenarios in which this constraint is satisfied are discussed.Comment: 4 pages, REVTeX; typos are corrected in (19), "Possible Solutions" and "Conclusion" are modified; additional calculational details are included; references are update

    Grand unification through gravitational effects

    Get PDF
    We systematically study the unification of gauge couplings in the presence of (one or more) effective dimension-5 operators cHGG/4MPl, induced into the grand unified theory by gravitational interactions at the Planck scale MPl. These operators alter the usual condition for gauge coupling unification, which can, depending on the Higgs content H and vacuum expectation value, result in unification at scales MX significantly different than naively expected. We find non-supersymmetric models of SU(5) and SO(10) unification, with natural Wilson coefficients c, that easily satisfy the constraints from proton decay. Furthermore, gauge coupling unification at scales as high as the Planck scale seems feasible, possibly hinting at simultaneous unification of gauge and gravitational interactions. In the Appendix we work out the group theoretical aspects of this scenario for SU(5) and SO(10) unified groups in detail; this material is also relevant in the analysis of non-universal gaugino masses obtained from supergravity.Comment: 27 pages, 5 figures, 8 tables, 1 appendix, revtex; v2: introduction and conclusion expanded, references added, minor changes, version published in PR

    The CERN-Gran Sasso Neutrino Program

    Get PDF
    This paper reviews the current experimental program envisaged with the future CERN neutrino beam called CNGS. Two detectors, OPERA and ICARUS, are under preparation and should investigate the neutrino properties coming from the CNGS to shed light on neutrino oscillation physics.Comment: Invited talk at the Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, CA, USA, Sept 2002, 9 pages, LaTex, 9 eps figures. PSN tau02_th09; v2: added 1 reference in section 6 + corrected typos and minor grammatical change

    Perturbative SO(10) Grand Unification

    Full text link
    We consider a phenomenologically viable SO(10) grand unification model of the unification scale MGM_G around 101610^{16} GeV which reproduces the MSSM at low energy and allows perturbative calculations up to the Planck scale MPM_P or the string scale MstM_{st}. Both requirements strongly restrict a choice of Higgs representations in a model. We propose a simple SO(10) model with a set of Higgs representations {2×10+16ˉ+16+45}\{2 \times {\bf 10} + {\bf \bar{16}} + {\bf 16} + {\bf 45} \} and show its phenomenological viability. This model can indeed reproduce the low-energy experimental data relating the charged fermion masses and mixings. Neutrino oscillation data can be consistently incorporated in the model, leading to the right-handed neutrino mass scale MRMG2/MPM_R \simeq M_G^2/M_P. Furthermore, there exists a parameter region which results the proton life time consistent with the experimental results.Comment: 14 pages, no figure, section5 was slightly modifie

    Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules

    Full text link
    Tweaking the properties of carbon nanotubes is a prerequisite for their practical applications. Here we demonstrate fine-tuning the electronic properties of single-wall carbon nanotubes via filling with ferrocene molecules. The evolution of the bonding and charge transfer within the tube is demonstrated via chemical reaction of the ferrocene filler ending up as secondary inner tube. The charge transfer nature is interpreted well within density functional theory. This work gives the first direct observation of a fine-tuned continuous amphoteric doping of single-wall carbon nanotubes

    Minimal Trinification

    Full text link
    We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> \bar\nu K^+ and p -> \mu^+ K^0 potentially observable. We also consider supersymmetric versions of the model, with one or two Higgs doublets at the weak scale. The radiative see-saw mechanism fails with weak-scale supersymmetry due to the nonrenormalization of the superpotential, but operates in the split-SUSY scenario.Comment: 23 pages, uses axodra

    On the complementarity of Hyper-K and LBNF

    Full text link
    The next generation of long-baseline experiments is being designed to make a substantial step in the precision of measurements of neutrino-oscillation probabilities. Two qualitatively different proposals, Hyper-K and LBNF, are being considered for approval. This document outlines the complimentarity between Hyper-K and LBNF.Comment: 5 pager

    Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Get PDF
    The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF) crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT) imaging were conducted. In the case of the defect with the 15 ?m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE) analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.&nbsp

    Initial report from the ICFA Neutrino Panel

    Full text link
    In July 2013 ICFA established the Neutrino Panel with the mandate "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development a neutrino factory as a future intense source of neutrinos for particle physics experiments". This, the Panel's Initial Report, presents the conclusions drawn by the Panel from three regional "Town Meetings" that took place between November 2013 and February 2014. After a brief introduction and a short summary of the status of the knowledge of the oscillation parameters, the report summarises the approved programme and identifies opportunities for the development of the field. In its conclusions, the Panel recognises that to maximise the discovery potential of the accelerator-based neutrino-oscillation programme it will be essential to exploit the infrastructures that exist at CERN, FNAL and J-PARC and the expertise and resources that reside in laboratories and institutes around the world. Therefore, in its second year, the Panel will consult with the accelerator-based neutrino-oscillation community and its stakeholders to: develop a road-map for the future accelerator-based neutrino-oscillation programme that exploits the ambitions articulated at CERN, FNAL and J-PARC and includes the programme of measurement and test-beam exposure necessary to ensure the programme is able to realise its potential; develop a proposal for a coordinated "Neutrino RD" programme, the accelerator and detector R&D programme required to underpin the next generation of experiments; and to explore the opportunities for the international collaboration necessary to realise the Neutrino Factory.Comment: ICFA Neutrino Panel 2014(01
    corecore