24 research outputs found

    ウニ胚におけるPar関連遺伝子の発現と機能

    Get PDF
    取得学位:博士(理学),学位授与番号:博甲第1041号,学位授与年月日:平成20年3月22

    A Case of Nivolumab-Induced Severe Mononeuropathy Multiplex and Rhabdomyolysis

    Get PDF
    We report an 81-year-old man with multiple liver metastases after tumorectomy for primary mediastinal malignant melanoma, who experienced limb weakness and sensory disturbance after nivolumab monotherapy. He was diagnosed with nivolumab-induced mononeuropathy multiplex and rhabdomyolysis based on serologic examination, muscle biopsy, magnetic resonance imaging of the limbs, and a nerve conduction study. A course of intravenous methylprednisolone (mPSL) was initiated at 1 g/day for 3 days. After that, oral prednisolone (PSL) was started at 1 mg/kg/day and gradually tapered. Limb muscle strength improved, but when PSL was reduced to 0.3 mg/kg/day, the weakness recurred, and a nerve conduction study showed exacerbation of mononeuropathy multiplex. The patient was again administered intravenous mPSL (0.5 g/day for 3 days) followed by oral PSL at 0.5 mg/kg/day, and his neurological symptoms improved. Nivolumab, an immune checkpoint inhibitor, is used for the treatment of advanced melanoma and other cancers and causes various immune-related adverse events (irAEs). However, neurological irAEs related to nivolumab are rare. Furthermore, there are no reports of simultaneous nerve and muscle impairment. Unexpected irAEs affecting various organs should be recognized and treated appropriately

    Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae

    Get PDF
    Partitioning-defective (par) genes were originally identified as genes that are essential for the asymmetric division of the Caenorhabditis elegans zygote. Studies have since revealed that the gene products are part of an evolutionarily conserved PAR-atypical protein kinase C system involved in cell polarity in various biological contexts. In this study, we analyzed the function of par6 during sea urchin morphogenesis by morpholino-mediated knockdown and by manipulation swapping of the primary mesenchyme cells (PMCs). Loss of Par6 resulted in defects in skeletogenesis and gut differentiation in larvae. Phenotypic analyses of chimeras constructed by PMC swapping showed that Par6 in non-PMCs is required for differentiation of archenteron into functional gut. In contrast, Par6 in both PMCs and ectodermal cells cooperatively regulates skeletogenesis. We suggest that Par6 in PMCs plays an immediate role in the deposition of biomineral in the syncytial cable, whereas Par6 in ectoderm may stabilize skeletal rods via an unknown signal(s). © 2012 Springer-Verlag

    Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo

    Get PDF
    金沢大学大学院自然科学研究科遺伝情報学The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear β-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear β-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway). © 2007 Elsevier Inc. All rights reserved

    Combination of apodized pupil and phase mask coronagraph for SCExAO at Subaru Telescope

    Get PDF
    Subaru telescope has been operating a high-contrast imaging instruments called Subaru coronagraphic extreme adaptive optics (SCExAO) which is used for exoplanet research. We are developing phase mask coronagraphs using photonic crystal wave plates inside the SCExAO. An eight-octant phase mask (8OPM) of three-layer achromatic structure has been fabricated as a second generation. It was designed for J and H band to reach 10⁻⁵ contrast, and Ks band to 10⁻⁴. A retardation and a coronagraphic performance of the 8OPM were confirmed almost as designed at 1550nm. An apodised (binary shaped) pupil to be used with the 8OPM was also studied to suppress diffracted light by the secondary shadow and spiders. We confirmed a performance of the combination of the apodizer and the 8OPM at visible wavelengths in a lab. We optimized the apodizer for a pupil of the SCExAO where we obtained a transmission of 50 % and a contrast of 10⁻⁴ the center and 10⁻⁶ at outer region. We manufactured the designed apodizer to be installed in SCExAO for infrared observations

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    モジュラー・デザインの経済効果と経営体質強化効果に関する実証研究

    Get PDF
    広島大学社会科学研究科 平成19年度 修士論
    corecore