179 research outputs found

    Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    Get PDF
    To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose

    Change in Long-Spacing Collagen in Descemet's Membrane of Diabetic Goto-Kakizaki Rats and Its Suppression by Antidiabetic Agents

    Get PDF
    We examined changes in the ultrastructure and localization of major extracellular matrix components, including 5 types of collagen (type I, III, IV, VI, and VIII), laminin, fibronectin, and heparan sulfate proteoglycan in Descemet's membrane of the cornea of diabetic GK rats. In the cornea of diabetic GK rats, more long-spacing collagen fibrils were observed in Descemet's membrane than in the membrane of the nondiabetic Wistar rats. Both GK and Wistar rats showed an age-dependent increase in the density of the long-spacing collagen. Immunoelectron microscopy showed that type VIII collagen was localized in the internodal region of the long-spacing collagen, which was not labelled by any of the other antibodies used. The antidiabetic agents nateglinide and glibenclamide significantly suppressed the formation of the long-spacing collagen in the diabetic rats. Long-spacing collagen would thus be a useful indicator for studying diabetic changes in the cornea and the effect of antidiabetic agents

    Dual Transneuronal Tracing in the Rat Entorhinal-Hippocampal Circuit by Intracerebral Injection of Recombinant Rabies Virus Vectors

    Get PDF
    Dual transneuronal tracing is a novel viral tracing methodology which employs two recombinant viruses, each expressing a different reporter protein. Peripheral injection of recombinant pseudorabies viruses has been used as a powerful method to define neurons that coordinate outputs to various peripheral targets of motor and autonomic systems. Here, we assessed the feasibility of recombinants of rabies virus (RV) vector for dual transneuronal tracing in the central nervous system. First, we examined whether two different RV-vectors can double label cells in vitro, and showed that efficient double labeling can be realized by infecting targeted cells with the two RV-vectors within a short time interval. The potential of dual transneuronal tracing was then examined in vivo in the entorhinal-hippocampal circuit, using the chain of projections from CA3 pyramidal cells to CA1 pyramidal cells and subsequently to entorhinal cortex. Six days after the injection of two RV-vectors into the left and right entorhinal cortex respectively, double-labeled neurons were observed in CA3 bilaterally. Some double-labeled neurons showed a Golgi-like labeling. Dual transneuronal tracing potentially provides a powerful and sensitive method to study issues such as the amount of convergence and divergence within and between circuits in the central nervous system. Using this sensitive technique, we established that single neurons in CA3 are connected to the entorhinal cortex bilaterally with only one synaptic relay

    Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis

    Get PDF
    The mechanism of glucose-induced biphasic insulin release is unknown. We used total internal reflection fluorescence (TIRF) imaging analysis to reveal the process of first- and second-phase insulin exocytosis in pancreatic β cells. This analysis showed that previously docked insulin granules fused at the site of syntaxin (Synt)1A clusters during the first phase; however, the newcomers fused during the second phase external to the Synt1A clusters. To reveal the function of Synt1A in phasic insulin exocytosis, we generated Synt1A-knockout (Synt1A−/−) mice. Synt1A−/− β cells showed fewer previously docked granules with no fusion during the first phase; second-phase fusion from newcomers was preserved. Rescue experiments restoring Synt1A expression demonstrated restoration of granule docking status and fusion events. Inhibition of other syntaxins, Synt3 and Synt4, did not affect second-phase insulin exocytosis. We conclude that the first phase is Synt1A dependent but the second phase is not. This indicates that the two phases of insulin exocytosis differ spatially and mechanistically

    Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis

    Get PDF
    A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation

    Asymmetrical bonding in liquid Bi disentangled by inelastic X-ray scattering

    Full text link
    The structure of liquid Bi has been debated in relationship with the Peierls distortion, as crystalline Bi takes A7 structure. A recent ab initio molec- ular dynamics simulation for liquid Bi predicted a flat-topped profile of the acoustic dispersion curve. To confirm the prediction, we have carried out inelas- tic x-ray scattering (IXS) for liquid Bi. The dynamic structure factor obtained by the IXS exhibits a distinct inelastic excitation of the longitudinal acoustic mode up to 14 nm−1 and the dispersion curve of the excitation energy obtained by the memory function analysis becomes a flat-topped one. We found that a linear chain model including the interatomic interaction with the second near- est neighbors can explain the flat-topped profile. The result suggests that the anomalous dispersion curve in liquid Bi arises from local anisotropy related to the Peierls distortion in the crystalline phase.
    corecore