46 research outputs found

    A feasibility study of the measurement of Higgs pair creation at a Photon Linear Collider

    Get PDF
    We studied the feasibility of the measurement of Higgs pair creation at a Photon Linear Collider (PLC). From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum γγ\gamma \gamma collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/c2c^2. We found that large backgrounds such as γγW+W,ZZ,\gamma \gamma \rightarrow W^+W^-, ZZ, and bbˉbbˉb\bar{b}b\bar{b}, can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of 5σ\sim 5 \sigma by operating the PLC for 5 years.Comment: 7 pages, 8 figures, 5 table

    Potent and broad anticancer activities of leaf extracts from Melia azedarach L. of the subtropical Okinawa islands

    Get PDF
    Plant extracts have been traditionally used for various therapeutic applications. By conducting an initial screening of several subtropical plants, in this study, we evaluated the anticancer activities of Melia azedarach L. The extract from Melia azedarach L. leaves (MLE) show high cytotoxic effects on cancer cells and in vivo mouse and dog tumor models. During the initial screening, MLE showed strong antiproliferative activity against HT-29 colon, A549 lung, and MKN1 gastric cancer cells. In subsequent tests, using 39 human tumor cell lines, we confirmed the potent anticancer activities of MLE. The anticancer activity of MLE was also confirmed in vivo. MLE markedly inhibited the growth of transplanted gastric MKN1 cancer xenografts in mice. To elucidate the mechanism underlying the anticancer effects of MLE, MLE-treated MKN1 cells were observed using an electron microscope; MLE treatment induced autophagy. Furthermore, western blot analysis of proteins in lysates of MLE-treated cells revealed induction of light chain 3 (LC3)-II autophagosomal proteins. Thus, MLE appeared to suppress MKN1 cell proliferation by inducing autophagy. In addition, in the mouse macrophage cell line J774A.1, MLE treatment induced TNF-alpha production, which might play a role in tumor growth suppression in vivo. We also performed a preclinical evaluation of MLE treatment on dogs with various cancers in veterinary hospitals. Dogs with various types of cancers showed a mean recovery of 76% when treated with MLE. Finally, we tried to identify the active substances present in MLE. All the active fractions obtained by reverse-phase chromatography contained azedarachin B-related moieties, such as 3-deacetyl-12-hydroxy-amoorastatin, 12-hydroxy-amoorastatin, and 12-hydroxyamoorastaton. In conclusion, MLE contains substances with promising anticancer effects, suggesting their future use as safe and effective anticancer agents

    A Public-key Encryption Scheme Based on Non-linear Indeterminate Equations (Giophantus)

    Get PDF
    In this paper, we propose a post-quantum public-key encryption scheme whose security depends on a problem arising from a multivariate non-linear indeterminate equation. The security of lattice cryptosystems, which are considered to be the most promising candidate for a post-quantum cryptosystem, is based on the shortest vector problem or the closest vector problem in the discrete linear solution spaces of simultaneous equations. However, several improved attacks for the underlying problems have recently been developed by using approximation methods, which result in requiring longer key sizes. As a scheme to avoid such attacks, we propose a public-key encryption scheme based on the smallest solution problem in the non-linear solution spaces of multivariate indeterminate equations that was developed from the algebraic surface cryptosystem. Since no efficient algorithm to find such a smallest solution is currently known, we introduce a new computational assumption under which proposed scheme is proven to be secure in the sense of IND-CPA. Then, we perform computational experiments based on known attack methods and evaluate that the key size of our scheme under the linear condition. This paper is a revised version of SAC2017

    Tablet characteristics and pharmacokinetics of orally disintegrating tablets containing coenzyme Q10 granules prepared by different methods

    Get PDF
    This study aimed to elucidate the characteristics and pharmacokinetics of orally disintegrating tablets (ODTs) containing coenzyme Q10 (CoQ10) granules prepared by spray drying, hot-melting, and wet granulation. The hardness and disintegration times of CoQ10-ODTs containing 5 % crospovidone were 61.6–81.8 N and < 30 s, respectively; these values indicate that the as-prepared ODTs were adequate for clinical use. The hardness and disintegration times of all ODTs did not change significantly after a 28-day storage period at 30 °C/10 % relative humidity (RH), but storage under high temperature and humidity affected their characteristics. The dissolution and pharmacokinetics of CoQ10-ODTs showed that ODTs prepared using the spray-drying method had the highest dissolution and absorbability among the CoQ10-ODTs tested. These results provide useful information for the preparation of ODTs using CoQ10

    Two-dimensional NMR data of a water-soluble β-(1â3, 1â6)-glucan from Aureobasidium pullulans and schizophyllan from Schizophyllum commune

    Full text link
    This article contains two-dimensional (2D) NMR experimental data, obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany) which can used for the determination of primary structures of schizophyllan from Schizophyllum commune (SPG) and a water-soluble β-(1â3, 1â6)-glucan from Aureobasidium pullulans. Data include analyzed the 2D NMR spectra of these β-glucans, which are related to the subject of an article in Carbohydrate Polymers, entitled âNMR spectroscopic structural characterization of a water-soluble β-(1â3, 1â6)-glucan from A. pullulansâ (Kono et al., 2017) [1]. Data can help to assign the 1H and 13C chemical shifts of the structurally complex polysaccharides. Keywords: NMR, β-(1â3, 1â6)-glucan, Aureobasidium pullulans, Schizophyllan, Spectral dat

    Proceedings of the ILC Physics Working Group Meeting at KEK in the period from May 2007 to June 2009

    Full text link
    The ILC physics working group is a mixture of experimentalists and theorists mainly working in Japan. It has its origin in the previous LC physics study group and has been reformed with the initiative of a JSPS Creative Scientific Research project: "Research and Development of a Novel Detector System for the International Linear Collider". The working group is, however, formally independent of the JSPS project and is open to everybody who is interested in ILC physics. The primary task of the working group is to reexamine the ILC physics in the context of the expected LHC outcome and to further strengthen the physics case for the ILC project. The topics covered in the working group activities range from key measurements such as those of the Higgs self-coupling and the top Yukawa coupling to uncover the secrets of the electroweak symmetry breaking to various new physics scenarios like supersymmetry, large extra dimensions, and other models of terascale physics. The working group has held ten General Meetings in the period of May 2007 to June 2009 to discuss the topics mentioned above. This report ummarizes the progress made in this period and sets a milestone for future developments in ILC physics
    corecore