17 research outputs found

    Preparation and Electrochemical Performance of Chitosan-based Gel Polymer Electrolyte Containing Ionic Liquid for Non-aqueous Electric Double Layer Capacitor

    No full text
    A novel gel polymer electrolyte based on chitosan with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) is prepared with a new procedure and applied to electric double layer capacitors (EDLCs). The chitosan-based gel polymer electrolyte causes less liquid leakage than the previous one. In this electrolyte system, EMImBF4 plays the roles of both a solvent for dissolving chitosan and a charge carrier ion for EDLC application. The present chitosan solution for gel polymer electrolytes shows acidity, and its acidity is raised by increasing the amount of EMImBF4 and the preparation temperature. The electrochemical stability of the electrolyte is decreased as the acidity of its chitosan solution increases. At 25°C, an EDLC cell with the electrolyte containing 70 wt.% EMImBF4 showed good charge-discharge performance and lower electrode/electrolyte interfacial resistance than those of a liquid-phase EMImBF4 system

    Radiocesium mobility in different parts of the two major tree species in Fukushima

    No full text
    Abstract Radiocesium (137Cs) released in the Fukushima Dai-ichi Nuclear Power Plant accident is still cycling in the forest ecosystem. We examined the mobility of 137Cs in the external parts—leaves/needles, branches, and bark—of the two major tree species in Fukushima, Japanese cedar (Cryptomeria japonica) and konara oak (Quercus serrata). This variable mobility will likely lead to spatial heterogeneity of 137Cs and difficulty in predicting its dynamics for decades. We conducted leaching experiments on these samples by using ultrapure water and ammonium acetate. In Japanese cedar, the 137Cs percentage leached from current-year needles was 26–45% (ultrapure water) and 27–60% (ammonium acetate)—similar to those from old needles and branches. In konara oak, the 137Cs percentage leached from leaves was 47–72% (ultrapure water) and 70–100% (ammonium acetate)—comparable to those from current-year and old branches. Relatively poor 137Cs mobility was observed in the outer bark of Japanese cedar and in organic layer samples from both species. Comparison of the results from corresponding parts revealed greater 137Cs mobility in konara oak than in Japanese cedar. We suggest that more active cycling of 137Cs occurs in konara oak
    corecore