27 research outputs found

    Patterning collagen for 3D cell structures

    No full text

    Fabrication of Comb Shape of Leading Edge Wing of Dragonfly

    No full text

    An Advanced Internet of Things System for Heatstroke Prevention with a Noninvasive Dual-Heat-Flux Thermometer

    No full text
    Heatstroke is a concern during sudden heat waves. We designed and prototyped an Internet of Things system for heatstroke prevention, which integrates physiological information, including deep body temperature (DBT), based on the dual-heat-flux method. A dual-heat-flux thermometer developed to monitor DBT in real-time was also evaluated. Real-time readings from the thermometer are stored on a cloud platform and processed by a decision rule, which can alert the user to heatstroke. Although the validation of the system is ongoing, its feasibility is demonstrated in a preliminary experiment

    Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold

    No full text
    In the research and development of micro air vehicles, understanding and imitating the flight mechanism of insects presents a viable way of progressing forward. While research is being conducted on the flight mechanism of insects such as flies and dragonflies, research on beetles that can carry larger loads is limited. Here, we clarified the beetle midlegs' role in the attenuation and cessation of the wingbeat. We anatomically confirmed the connection between the midlegs and the elytra. We also further clarified which pair of legs are involved in the wingbeat attenuation mechanism, and lastly demonstrated free-flight control via remote leg muscle stimulation. Observation of multiple landings using a high-speed camera revealed that the wingbeat stopped immediately after their midlegs were lowered. Moreover, the action of lowering the midleg attenuated and often stopped the wingbeat. A miniature remote stimulation device (backpack) mountable on beetles was designed and utilized for the free-flight demonstration. Beetles in free flight were remotely induced into lowering (swing down) each leg pair via electrical stimulation, and they were found to lose significant altitude only when the midlegs were stimulated. Thus, the results of this study revealed that swinging down of the midlegs played a significant role in beetle wingbeat cessation. In the future, our findings on the wingbeat attenuation and cessation mechanism are expected to be helpful in designing bioinspired micro air vehicles.Ministry of Education (MOE)This work was partly supported by the Singapore Ministry of Education (Grant No. MOE2017-T2-2-067), MEXT/JSPS KAKENHI (Grant No. 18K18838), and MEXT Super Global University Project: Frontier of Embodiment Informatics: ICT and Robotics, Waseda University

    Soft Tissue Compliance Detection in Minimally Invasive Surgery: Dynamic Measurement with Piezoelectric Sensor Based on Vibration Absorber Concept

    Get PDF
    Recent research in the medical field has increasingly focused on tissue repair, tumor detection, and associated therapeutic techniques. A significant challenge in Minimally Invasive Surgery (MIS) is the loss of direct tactile sensation by surgeons, as they cannot physically feel the organs they operate on. Tactile feedback enhances patient safety by tissue differentiation and reducing inadvertent damage risks. Addressing this challenge, this study introduces a novel tactile sensor designed for compliance detection to enhance tactile feedback in MIS. The sensor operates on a 2-Degree-of-Freedom (2-DOF) vibration absorber system, utilizing a piezoelectric actuator with a calibrated stiffness of 188 N/m. It interprets tissue stiffness regarding a spring constant, Ko, and measures changes in soft tissue stiffness by analyzing variations in the vibration absorber frequency, specifically at the frequency which causes the first mass to exhibit zero amplitude. The effectiveness of this sensor was evaluated through tests on polydimethylsiloxane (PDMS) specimens, which were engineered to replicate varying stiffness found in human organ tissues. Young's modulus of these specimens was determined using a universal testing machine, showing a range from 10.12 to 226.89 kPa. Additionally, the sensor was applied to measure the stiffness of various chicken tissues – liver, heart, breast, and gizzard with respective Young's moduli being 1.97, 9.47, 19.55, and 96.36 kPa. This sensor successfully differentiated between tissue types non-invasively, without requiring substantial deformation or penetration of the tissues. Given its piezoelectric nature, the sensor also holds significant potential for miniaturization through Micro-Electro-Mechanical Systems technology (MEMS), broadening its applicability in surgical environments

    フェノール樹脂を用いた傾斜機能型アブレータの熱防御性能評価解析

    No full text
    corecore