593 research outputs found

    A practical approach to switching-loss reduction in a large-capacity static VAr compensator based on voltage-source inverters

    Get PDF
    This paper presents a simple method for reduction of switching and snubbing losses in a large-capacity static VAr compensator (SVC) consisting of multiple three-phase voltage-source square-wave inverters. The proposed method is characterized by a “commutation capacitor” connected in parallel with each switching device. The commutation capacitor allows the SVC to perform zero-voltage switching, and to reduce switching losses. The electric charge stored in the commutation capacitor is not dissipated, but regenerated to the DC-link capacitor. Moreover, a soft-starting method for the SVC is also presented to avoid forming a short circuit across the commutation capacitor during startup. Experimental results obtained from a 10 kVAr laboratory setup are shown to verify the viability of the operating principle of the commutation capacitor </p

    Analysis and design of a DC voltage-controlled static VAr compensator using quad-series voltage-source inverters

    Get PDF
    This paper presents a DC voltage-controlled static VAr compensator (SVC) using quad-series voltage-source non-PWM inverters. The SVC consists of four three-phase voltage-source inverters having a common DC capacitor and four three-phase transformers, the primary windings of which are connected in series with each other. Although each inverter outputs a square wave voltage, the synthesized AC voltage of the SVC has a 24-step waveshape. This results not only in a great reduction of harmonic currents and DC voltage ripples but also in less switching and snubbing losses. This paper develops the analysis of the transient response and the resonance between the AC reactors and the DC capacitor, with the focus on practical use. Experimental results obtained from a 10-kVA laboratory system are shown to agree well with the analytical results, thus verifying the analysis and leading to the design of DC capacitance value </p

    Blue-tilted Primordial Gravitational Waves from Massive Gravity

    Full text link
    We study a theory of massive tensor gravitons which predicts blue-tilted and largely amplified primordial gravitational waves. After inflation, while their mass is significant until it diminishes to a small value, gravitons are diluted as non-relativistic matter and hence their amplitude can be substantially amplified compared to the massless gravitons which decay as radiation. We show that such gravitational waves can be detected by interferometer experiments, even if their signal is not observed on the CMB scales.Comment: 6 pages, 2 figure
    • …
    corecore