3 research outputs found

    Global Analysis of Genetic, Epigenetic and Transcriptional Polymorphisms in Arabidopsis thaliana Using Whole Genome Tiling Arrays

    Get PDF
    Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5β€²CCGG3β€² restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5β€² and 3β€² ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation

    The next generation of microarray research: applications in evolutionary and ecological genomics

    No full text
    Microarray technology is one of the key developments in recent years that has propelled biological research into the post-genomic era. With the ability to assay thousands to millions of features at the same time, microarray technology has fundamentally changed how biological questions are addressed, from examining one or a few genes to a collection of genes or the whole genome. This technology has much to offer in the study of genome evolution. After a brief introduction on the technology itself, we then focus on the use of microarrays to examine genome dynamics, to uncover novel functional elements in genomes, to unravel the evolution of regulatory networks, to identify genes important for behavioral and phenotypic plasticity, and to determine microbial community diversity in environmental samples. Although there are still practical issues in using microarrays, they will be alleviated by rapid advances in array technology and analysis methods, the availability of many genome sequences of closely related species and flexibility in array design. It is anticipated that the application of microarray technology will continue to better our understanding of evolution and ecology through the examination of individuals, populations, closely related species or whole microbial communities
    corecore