1,949 research outputs found

    Unconventional Anomalous Hall Effect in the Metallic Triangular-Lattice Magnet PdCrO2

    Full text link
    We experimentally reveal an unconventional anomalous Hall effect (UAHE) in a quasi-two-dimensional triangular-lattice antiferromagnet PdCrO2. Using high quality single crystals of PdCrO2, we found that the Hall resistivity deviates from the conventional behavior below T* = 20 K, noticeably lower than TN = 37.5 K, at which Cr^{3+} (S=3/2) spins order in a 120 degree structure. In view of the theoretical expectation that the spin chirality cancels out in the simplest 120 degree spin structure, we discuss required conditions for the emergence of UAHE within Berry-phase mechanisms.Comment: 4 pages, 5 figures, accepted for publication in PR

    Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics

    Full text link
    We perform a direct test of the gauge-gravity duality associated with the system of N D0-branes in type IIA superstring theory at finite temperature. Based on the fact that higher derivative corrections to the type IIA supergravity action start at the order of \alpha'^3, we derive the internal energy in expansion around infinite 't Hooft coupling up to the subleading term with one unknown coefficient. The power of the subleading term is shown to be nicely reproduced by the Monte Carlo data obtained nonperturbatively on the gauge theory side at finite but large effective (dimensionless) 't Hooft coupling constant. This suggests, in particular, that the open strings attached to the D0-branes provide the microscopic origin of the black hole thermodynamics of the dual geometry including \alpha' corrections. The coefficient of the subleading term extracted from the fit to the Monte Carlo data provides a prediction for the gravity side, which can be checked once the complete form of the O(\alpha'^3) corrections to the supergravity action is obtained.Comment: REVTeX4, 4 pages, 2 figures. Ver.2:intuitive derivation of the subleading term adde

    A first-principles study of tunneling magnetoresistance in Fe/MgAl2O4/Fe(001) magnetic tunnel junctions

    Full text link
    We investigated the spin-dependent transport properties of Fe/MgAl2O4/Fe(001) magnetic tunneling junctions (MTJs) on the basis of first-principles calculations of the electronic structures and the ballistic conductance. The calculated tunneling magnetoresistance (TMR) ratio of a Fe/MgAl2O4/Fe(001) MTJ was about 160%, which was much smaller than that of a Fe/MgO/Fe(001) MTJ (1600%) for the same barrier thickness. However, there was an evanescent state with delta 1 symmetry in the energy gap around the Fermi level of normal spinel MgAl2O4, indicating the possibility of a large TMR in Fe/MgAl2O4/Fe(001) MTJs. The small TMR ratio of the Fe/MgAl2O4/Fe(001) MTJ was due to new conductive channels in the minority spin states resulting from a band-folding effect in the two-dimensional (2-D) Brillouin zone of the in-plane wave vector (k//) of the Fe electrode. Since the in-plane cell size of MgAl2O4 is twice that of the primitive in-plane cell size of bcc Fe, the bands in the boundary edges are folded, and minority-spin states coupled with the delta 1 evanescent state in the MgAl2O4 barrier appear at k//=0, which reduces the TMR ratio of the MTJs significantly.Comment: 5 pages, 6 figures, 1 tabl

    Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics

    Full text link
    In the string/gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop operator W in gauge theory is expected to contain the information of the Schwarzschild radius R_{Sch} of the dual black hole geometry as log = R_{Sch} / (2 pi alpha' T). This translates to the power-law behavior log = 1.89 (T/lambda^{1/3})^{-3/5}, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulation of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side.Comment: REVTeX4, 4 pages, 1 figur

    Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature

    Full text link
    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature. The recently proposed non-lattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black hole geometry. The Polyakov line takes large values even at low temperature suggesting the absence of a phase transition in sharp contrast to the bosonic case. These results provide highly non-trivial evidences for the gauge/gravity duality.Comment: REVTeX4, 4 pages, 3 figure

    Spin filtering by a periodic nanospintronic devices

    Full text link
    For a linear chain of diamond-like elements, we show that the Rashba spin-orbit interaction (which can be tuned by a perpendicular gate voltage) and the Aharonov-Bohm flux (due to a perpendicular magnetic field) can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized along a direction that can be tuned by the electric and magnetic fields and by the electron energy. All the other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.Comment: Published versio

    The Nuclear Activity of the Galaxies in the Hickson Compact Groups

    Full text link
    In order to investigate the nuclear activity of galaxies residing in compact groups of galaxies, we present results of our optical spectroscopic program made at Okayama Astrophysical Observatory. We have performed optical spectroscopy of 69 galaxies which belong to 31 Hickson Compact Groups (HCGs) of Galaxies. Among them, three galaxies have discordant redshifts. Further, spectral quality is too poor to classify other three galaxies. Therefore, we describe our results for the remaining 63 galaxies. Our main results are summarized below. (1) We have found in our sample; 28 AGN, 16 HII nuclei, and 19 normal galaxies which show no emission line. We used this HCG sample for statistical analyses. (2) Comparing the frequency distributions of activity types between the HCGs and the field galaxies whose data are taken from Ho, Filippenko, & Sargent (382 field galaxies), we find that the frequency of HII nuclei in the HCGs is significantly less than that in the field. However, this difference may be due to selection bias that our HCG sample contains more early-type galaxies than the field, because it is known that HII nuclei are rarer in early-type galaxies than in later ones. (3) Applying correction this morphological bias to the HCG sample, we find that there is no statistically significant difference in the frequency of occurrence of emission-line galaxies between the HCGs and the field. This implies that the dense galaxy environment in the HCGs does not affect triggering both the AGN activity and the nuclear starburst. We discuss some implications on the nuclear activity in the HCG galaxies.Comment: 33 pages (3 aasms4 LaTeX files), 5 figures (5 Postscript files: excluded Figure 1), Accepted for publication in The Astronomical Journa
    • …
    corecore