15 research outputs found

    Secure Face and Liveness Detection with Criminal Identification for Security Systems

    Get PDF
    The advancement of computer vision, machine learning, and image processing techniques has opened new avenues for enhancing security systems. In this research work focuses on developing a robust and secure framework for face and liveness detection with criminal identification, specifically designed for security systems. Machine learning algorithms and image processing techniques are employed for accurate face detection and liveness verification. Advanced facial recognition methods are utilized for criminal identification. The framework incorporates ML technology to ensure data integrity and identification techniques for security system. Experimental evaluations demonstrate the system's effectiveness in detecting faces, verifying liveness, and identifying potential criminals. The proposed framework has the potential to enhance security systems, providing reliable and secure face and liveness detection for improved safety and security. The accuracy of the algorithm is 94.30 percent. The accuracy of the model is satisfactory even after the results are acquired by combining our rules inwritten by humans with conventional machine learning classification algorithms. Still, there is scope for improving and accurately classifying the attack precisely

    Study of histopathological pattern of endometrium in abnormal uterine bleeding in a tertiary care center

    Get PDF
    Background: It is estimated that 9-30% of women of reproductive age suffer from abnormal uterine bleeding. As most cases are associated with anovulatory menstrual cycles, adolescent and perimenopausal women are particularly vulnerable to this particular condition. The aim of this study was to evaluate the histopathological pattern of endometrial biopsy from patients presenting with abnormal uterine bleeding. Methods: The retrospective study was conducted in the Department of Pathology in tertiary care centre from 1st January 2021 to 31 December 2022. All the patients presenting with abnormal uterine bleeding and who underwent endometrial biopsy were included in this study. Distribution of various histopathological patterns was observed in the different age groups. Results: A total of 260 cases were included in the study. The commonest pattern in these patients was proliferative endometrium (31 %) and products of conception (31%), hyperplasia without atypia (13.7%). Other patterns identified were secretory endometrium, chronic endometritis, endometrial polyp, complete mole, partial mole, and Ca endometrium. Conclusions: As observed from the study, there is an age specific association of endometrial bleeding, with highest incidence in 21-30 years of age group. Hence, dilatation and curettage are helpful for diagnosis, to assess therapeutic response and to know the pathological incidence of organic lesions in cases of abnormal uterine bleeding

    User Controlling System Using LAN

    No full text
    The project aims to develop various network utilities which are required to effectively monitor a user activities using LAN network. It aims to develop an integrated software solution that allows a network administrator to remotely monitor his users and their daily activities through LAN[1]. This function allows obtaining detailed information about the activities your employees are engaged into during their working hours, and also create statistical reports with important data. For a more detailed observation of the activities occurring on user computers, Software takes snapshots at pre-set intervals inconspicuously for the user and saves them into a database chronologically[2]. A quick gallery view of these snapshots gives full information about all users activities

    Secure kNN Query Processing in Entrusted Cloud Environments

    No full text
    Now days a Wireless devices which having geopositioning facility like GPS enable users to give information about their current location. Users are interested in querying in their physical location like restaurants, college, home, etc. Such data may be important due to their information. Furthermore, storing such relevant information regularly to the users tedious task, so the author of such information will make the data access only to paying users. The users are send their proper location as the query parameter, and wish to accept as result the nearest position, i.e., nearest-neighbors (NNs). But actual data owners do not have the technical knowledge to support processed query on a large data, so they outsource information storage and querying to a main dataset. Many such cloud providers exist offer powerful storage and computational structures at less cost. However, such a dataset providers are not completely trusted, and typically behave in a causal fashion. Specifically they use the some rules to answer queries perfectly, but they also collect the locations of the users and the subscribers for other uses. Giving this information of locations can lead to security breaches and financial losses to the data provider, for whom the dataset is an important source of revenue. The importance of user locations leads to privacy and may refer subscribers from using the service altogether. In this paper, we propose a set of ideas that allow NN queries in an unsecured outsourced structure, while at the same time provide security to both the location and querying users’ positions. Our ideas focus on only secure order-preserving encryption method which is known to-date. We also provide performance measurements to reduce the processing cost inherent to processing on secured data, and we consider the problem of incrementally updating these datasets. We present an extensive performance measurement of our ideas to illustrate their use in practice. Keywords- location privacy, spatial databases, database outsourcing, mutable order preserving encoding

    Soft annealing effect on the properties of sputter grown Cu2ZnSnS4 (CZTS) thin films for solar cell applications

    No full text
    In present study, CZTS films were fabricated using 2 different processes and their properties have been compared. The first is a 2-stage process which includes deposition of CZT followed by sulfurization and the second is a 3-stage process which includes deposition of identical CZT, soft annealing (pre-heating) and sulfurization. Structural, morphological, optical and compositional properties of CZTS films are investigated by XRD, Raman spectroscopy, FE-SEM, UV–Visible spectroscopy, EDS and photoresponse measurements. Structural analysis revealed that films prepared by both processes have polycrystalline kesterite-CZTS structure and exhibit prefered orientation along (1 1 2) direction. It has been observed that soft annealing temperature in 3-stage process significantly improve the crystal quality of CZTS films. Surface morphology of films sulfurized at 550 °C shows a uniform and compact micrograin (∼0.31 µm) without cracks. The soft annealing temperature significantly improves micrograin size (∼0.49 µm) and compactness of CZTS films. UV–Visible spectroscopy showed that the band gap of all CZTS films is in optimal range. The CZTS films fabricated by 3-stage process, exhibits high photocurrent response under intermittent visible-light irradiation, implying that they can useful as an absorber layer in solar cells

    Soft annealing effect on the properties of sputter grown Cu2ZnSnS4 (CZTS) thin films for solar cell applications

    No full text
    In present study, CZTS films were fabricated using 2 different processes and their properties have been compared. The first is a 2-stage process which includes deposition of CZT followed by sulfurization and the second is a 3-stage process which includes deposition of identical CZT, soft annealing (pre-heating) and sulfurization. Structural, morphological, optical and compositional properties of CZTS films are investigated by XRD, Raman spectroscopy, FE-SEM, UV–Visible spectroscopy, EDS and photoresponse measurements. Structural analysis revealed that films prepared by both processes have polycrystalline kesterite-CZTS structure and exhibit prefered orientation along (1 1 2) direction. It has been observed that soft annealing temperature in 3-stage process significantly improve the crystal quality of CZTS films. Surface morphology of films sulfurized at 550 °C shows a uniform and compact micrograin (∼0.31 µm) without cracks. The soft annealing temperature significantly improves micrograin size (∼0.49 µm) and compactness of CZTS films. UV–Visible spectroscopy showed that the band gap of all CZTS films is in optimal range. The CZTS films fabricated by 3-stage process, exhibits high photocurrent response under intermittent visible-light irradiation, implying that they can useful as an absorber layer in solar cells

    Preparation and characterization of γ-In2Se3 thin-film photoanodes for photoelectrochemical water splitting

    No full text
    Indium selenide (γ-In2Se3) films were prepared using RF magnetron sputtering. Influence of deposition time on structural, optical, morphological, and photoelectrochemical (PEC) performance was studied. Formation of γ-In2Se3 is confirmed by low angle XRD, Raman spectroscopy, and XPS analysis. Surface morphology investigated using FE-SEM shows that γ-In2Se3 films are uniform and have a dense grain structure, without cracks and holes. Optical properties show that γ-In2Se3films absorb mainly in the UV region, and the bandgap energy decreases from 2.81 to 2.27 eV as deposition duration increases. Conduction and valance band-edge potential values show that γ-In2Se3 films are suitable for photoelectrochemical hydrogen evolution. PEC activity of γ-In2Se3 photoanodes was evaluated using linear sweep voltammetry (LSV), and there was an increase in photocurrent density with deposition time. Electron impedance spectroscopy (EIS) analysis revealed that γ-In2Se3 photoanodes had high charge transfer resistance, and it decreases with deposition time, which leads to improved PEC performance. Investigation of Mott Schottky's (MS) results shows a shifting of flat band potential towards negative potential, suggesting movement of fermi level towards conduction band edge. Carrier density increases from 3.7 × 1019 cm−3 to 8.9 × 1020 cm−3 and depletion layer width of γ-In2Se3 photoanodes are found in the range of ~ 2.67–9.10 nm. The gradual increase in electron lifetime indicates a decrease in the recombination rate of photo-generated charge carriers. An increase in time-dependent photocurrent density reveals that γ-In2Se3 films have effective electron–hole separation. Our work demonstrates that γ-In2Se3 can be a probable candidate for PEC water splitting and opto-electronic applications

    Highly stable and Pb-free bismuth-based perovskites for photodetector applications

    No full text
    Herein, we report the synthesis of highly stable, Pb-free bismuth iodide (BiI3 or BI), stoichiometric methylammonium bismuth iodide [(CH3NH3)3Bi2I9 or MA3Bi2I9 or s-MBI] and non-stoichiometric methylammonium bismuth iodide [(CH3NH3)2BiI5 or MA2BiI5 or Ns-MBI] perovskite thin films for photodetector applications. These films are synthesized at room temperature by a single step solution process spin coating method. The structural, optical, and morphological properties of these films were investigated using different characterization techniques such as XRD, Raman spectroscopy, FE-SEM, UV-Visible spectroscopy, etc. Formation of BI, s-MBI and Ns-MBI thin films is confirmed by XRD and Raman spectroscopy measurements. XRD analysis reveals that BI has a hexagonal crystal structure and a P63/mmc hexagonal space group for s-MBI and Ns-MBI. The optical properties of BI thin films show a high absorption coefficient (∼104 cm−1) and a band gap of ∼1.74 eV. Similarly, s-MBI films have a high absorption coefficient (∼103 cm−1) and an indirect band gap of ∼1.8 eV. Moving from s-MBI to Ns-MBI, the value of absorption coefficient is ∼103 cm−1 and the band gap corresponds to ∼2 eV. Finally, photodetectors based on the synthesized BI, s-MBI and Ns-MBI perovskites have been directly fabricated on FTO substrates. All photodetectors exhibited highly stable photo-switching behaviour along with excellent photoresponsivity and detectivity, with a fast response and recovery time. Our work demonstrates that Pb-free BI, s-MBI and Ns-MBI perovskites have great potential in the future for realizing stable photodetectors
    corecore