99 research outputs found

    Autosomal dominant ANO5-related disorder associated with myopathy and gnathodiaphyseal dysplasia

    Get PDF
    OBJECTIVE: To investigate the molecular basis of muscle disease and gnathodiaphyseal dysplasia (GDD) in a large kindred with 11 (6 women and 5 men) affected family members. METHODS: We performed clinical assessment of 3 patients and collected detailed clinical and family history data on 8 additional patients. We conducted molecular genetic analyses on 5 patients using comprehensive neuromuscular disorder panels, exome sequencing (ES), and targeted testing for specific genetic variants. We analyzed the segregation of the muscle and bone phenotypes with the underlying molecular cause. RESULTS: The unique clinical presentation of recurrent episodes of rhabdomyolysis associated with muscle cramps, hyperCKemia, muscle hypertrophy, with absent or mild muscle weakness, as well as cemento-osseous lesions of the mandible, with or without bone fractures and other skeletal abnormalities, prompted us to look for the underlying molecular cause of the disorder in this kindred. Molecular testing revealed a missense variant in anoctamin 5 (ANO5) designated as c.1538C>T; p.Thr513Ile, which was previously described in a large kindred with GDD. In silico analysis, searching publicly available databases, segregation analysis, as well as functional studies performed by another group provide strong evidence for pathogenicity of the variant. ES data in the proband excluded the contribution of additional genetic factors. CONCLUSIONS: This report described the coexistence of muscle and bone phenotypes in the same patients with ANO5-related disorder. Our data challenge recent results that suggested complete dichotomy of these phenotypes and the proposed loss-of-function and gain-of-function mechanisms for the skeletal and muscle phenotypes, respectively

    SLC6A1 variant pathogenicity, molecular function and phenotype: A genetic and clinical analysis

    Get PDF
    Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/)

    De novo missense variants in FBXO11 alter its protein expression and subcellular localization

    Get PDF
    Recently, others and we identified de novo FBXO11 (F-Box only protein 11) variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data, our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs

    Cation leak through the ATP1A3 pump causes spasticity and intellectual disability

    Get PDF
    ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C\u3eT; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C\u3eT; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases

    Delineation of phenotypes and genotypes related to cohesin structural protein RAD21

    Get PDF
    RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation

    Semaphorin-plexin signaling: From axonal guidance to a new X-linked intellectual disability syndrome

    Get PDF
    BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P \u3c 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation

    Case report: Malignant hypertension associated with catecholamine excess in a patient with Leigh syndrome

    Get PDF
    BACKGROUND: Leigh syndrome is a progressive neurodegenerative mitochondrial disorder caused by multiple genetic etiologies with multisystemic involvement that mostly affecting the central nervous system with high rate of premature mortality. CASE PRESENTATION: We present a 3-year, 10 month-old female patient with Leigh syndrome complicated by renal tubular acidosis, hypertension, gross motor delay, who presented with hypertensive emergency, persistent tachycardia, insomnia and irritability. Her previous genetic workup revealed a pathogenic variant in the MT-ND5 gene designated as m.13513G \u3e A;p.Asp393Asn with a heteroplasmy of 69%. She presented acutely with malignant hypertension requiring intensive care unit admission. Her acute evaluation revealed elevated serum and urine catecholamines, without an identifiable catecholamine-secreting tumor. After extensive evaluation for secondary causes, she was ultimately found to have progression of her disease with new infarctions in her medulla, pons, and basal ganglia as the most likely etiology of her hypertension. She was discharged home with clonidine, amlodipine and atenolol for hypertension management. This report highlights the need to recognize possible autonomic dysfunction in mitochondrial disease and illustrates the challenges for accurate and prompt diagnosis and subsequent management of the associated manifestations. This association between catecholamine induced autonomic dysfunction and Leigh syndrome has been previously reported only once with MT-ND5 mutation. CONCLUSIONS: Elevated catecholamines with malignant secondary hypertension may be unique to this specific mutation or may be a previously unrecognized feature of Leigh syndrome and other mitochondrial complex I deficient syndromes. As such, patients with Leigh syndrome who present with malignant hypertension should be treated without the need for extensive work-up for catecholamine-secreting tumors
    • …
    corecore