3,323 research outputs found

    Computation of the Kolmogorov-Sinai entropy using statistitical mechanics: Application of an exchange Monte Carlo method

    Full text link
    We propose a method for computing the Kolmogorov-Sinai (KS) entropy of chaotic systems. In this method, the KS entropy is expressed as a statistical average over the canonical ensemble for a Hamiltonian with many ground states. This Hamiltonian is constructed directly from an evolution equation that exhibits chaotic dynamics. As an example, we compute the KS entropy for a chaotic repeller by evaluating the thermodynamic entropy of a system with many ground states.Comment: 7 page

    Effective temperature in nonequilibrium steady states of Langevin systems with a tilted periodic potential

    Full text link
    We theoretically study Langevin systems with a tilted periodic potential. It has been known that the ratio Θ\Theta of the diffusion constant to the differential mobility is not equal to the temperature of the environment (multiplied by the Boltzmann constant), except in the linear response regime, where the fluctuation dissipation theorem holds. In order to elucidate the physical meaning of Θ\Theta far from equilibrium, we analyze a modulated system with a slowly varying potential. We derive a large scale description of the probability density for the modulated system by use of a perturbation method. The expressions we obtain show that Θ\Theta plays the role of the temperature in the large scale description of the system and that Θ\Theta can be determined directly in experiments, without measurements of the diffusion constant and the differential mobility
    • …
    corecore