24,683 research outputs found
Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges
We investigated the dielectric functions () of Ir, Ru, Pt,
and IrO, which are commonly used as electrodes in ferroelectric thin film
applications. In particular, we investigated the contributions from bound
charges (), since these are important scientifically as
well as technologically: the (0) of a metal electrode is one of
the major factors determining the depolarization field inside a ferroelectric
capacitor. To obtain (0), we measured reflectivity spectra of
sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7
meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and
imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings
to extract (0) values. Ir, Ru, Pt, and IrO produced
experimental (0) values of 4810, 8210, 5810, and
295, respectively, which are in good agreement with values obtained using
first-principles calculations. These values are much higher than those for
noble metals such as Cu, Ag, and Au because transition metals and IrO have
such strong d-d transitions below 2.0 eV. High (0) values will
reduce the depolarization field in ferroelectric capacitors, making these
materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table
Parity-violating asymmetry in with a pionless effective theory
Nuclear parity violation is studied with polarized neutrons in the
photodisintegration of the deuteron at low energies. A pionless effective field
theory with di-baryon fields is used for the investigation. Hadronic weak
interactions are treated by parity-violating di-baryon-nucleon-nucleon
vertices, which have undetermined coupling contants. A parity-violating
asymmetry in the process is calculated for the incident photon energy up to 30
MeV. If experimental data for the parity-violating asymmetry become available
in the future, we will be able to determine the unknown coupling contants in
the parity-violating vertices.Comment: 4 pages. A contribution to APFB2011, August 22-26, 2011, Seoul, Kore
Spin relaxation in mesoscopic superconducting Al wires
We studied the diffusion and the relaxation of the polarized quasiparticle
spins in superconductors. To that end, quasiparticles of polarized spins were
injected through an interface of a mesoscopic superconducting Al wire in
proximity contact with an overlaid ferromagnetic Co wire in the single-domain
state. The superconductivity was observed to be suppressed near the
spin-injecting interface, as evidenced by the occurrence of a finite voltage
for a bias current below the onset of the superconducting transition. The spin
diffusion length, estimated from finite voltages over a certain length of Al
wire near the interface, was almost temperature independent in the temperature
range sufficiently below the superconducting transition but grew as the
transition temperature was approached. This temperature dependence suggests
that the relaxation of the spin polarization in the superconducting state is
governed by the condensation of quasiparticles to the paired state. The spin
relaxation in the superconducting state turned out to be more effective than in
the normal state.Comment: 9 pages, 8 figure
Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction
We study a non-ergodic transition in a many-body Langevin system. We first
derive an equation for the two-point time correlation function of density
fluctuations, ignoring the contributions of the third- and fourth-order
cumulants. For this equation, with the average density fixed, we find that
there is a critical temperature at which the qualitative nature of the
trajectories around the trivial solution changes. Using a method of dynamical
system reduction around the critical temperature, we simplify the equation for
the time correlation function into a two-dimensional ordinary differential
equation. Analyzing this differential equation, we demonstrate that a
non-ergodic transition occurs at some temperature slightly higher than the
critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe
- …