70 research outputs found
Bronchiolitis Obliterans Syndrome (BOS), Bronchiolitis Obliterans Organizing Pneumonia (BOOP), and Other Late-Onset Noninfectious Pulmonary Complications following Allogeneic Hematopoietic Stem Cell Transplantation
AbstractPulmonary dysfunction is a significant complication following allogeneic hematopoietic stem cell transplantation (HSCT), and is associated with significant morbidity and mortality. Effective antimicrobial prophylaxis and treatment strategies have increased the incidence of noninfectious lung injury, which can occur in the early posttransplant period or in the months and years that follow. Late-onset noninfectious pulmonary complications are frequently encountered, but diagnostic criteria and terminology for these disorders can be confusing and therapeutic approaches are suboptimal. As a consequence, inaccurate diagnosis of these conditions may hamper the appropriate data collection, enrollment into clinical trials, and appropriate patient care. The purpose of this review is to clarify the pathogenesis and diagnostic criteria of representative conditions, such as bronchiolitis obliterans syndrome and bronchiolitis obliterans organizing pneumonia, and to discuss the appropriate diagnostic strategies and treatment options
Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance
Graft-vs.-host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses have been made in defining the dichotomous role of dendritic cells (DCs) in the development of GVHD. Host-derived DCs are important to elicit allogeneic T cell responses, whereas certain donor-types of DCs derived from newly engrafted hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction. In contrast, some DCs also play non-redundant roles in mediating immune tolerance. They induce apoptotic deletion of host-reactive donor T cells while promoting expansion and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with significantly decreased number of circulating peripheral blood DCs during engraftment. Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from engrafted HSPCs, impairs the antigen presentation function of newly generated DCs and reduces the capacity of DCs to regulate Treg. The present review will discuss the importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after allo-HSCT
Acute Kidney Injury in Patients with Systemic Sclerosis Participating in Hematopoietic Cell Transplantation Trials in the United States
Recipients of hematopoietic cell transplantation may be at risk for developing acute kidney injury (AKI), and this risk may be increased in patients who undergo transplantation for severe systemic sclerosis (SSc) due to underlying scleroderma renal disease. AKI after transplantation can increase treatment-related mortality. To better define these risks, we analyzed 91 patients with SSc who were enrolled in 3 clinical trials in the United States of autologous or allogeneic hematopoietic cell transplantation (HCT). Eleven (12%) of the 91 patients with SSc in these studies (8 undergoing autologous HCT, 1 undergoing allogeneic HCT, 1 pretransplantation, 1 given i.v. cyclophosphamide on a transplantation trial) experienced AKI, of whom 8 required dialysis and/or therapeutic plasma exchange. AKI injury in the 9 HCT recipients developed a median of 35 days (range, 0-90 days) after transplantation. Ten of 11 patients with AKI received angiotensin-converting enzyme inhibitor (ACE-I) therapy. The etiology of AKI was attributed to scleroderma renal crisis in 6 patients (including 2 with normotensive renal crisis), to AKI of uncertain etiology in 2 patients, and to AKI superimposed on scleroderma kidney disease in 3 patients. Eight of the 11 patients died, one each because of progression of SSc, multiorgan failure, gastrointestinal and pulmonary bleeding, pericardial tamponade and pulmonary complications, diffuse alveolar hemorrhage, pulmonary embolism, graft-versus-host disease, and malignancy. Limiting nephrotoxins, cautious use of corticosteroids, renal shielding during total body irradiation, strict control of blood pressure, and aggressive use of ACE-Is may be of importance in preventing renal complications after HCT for SSc
Safety and efficacy of defibrotide for the treatment of severe hepatic veno-occlusive disease
Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome, is a potentially life-threatening complication of chemotherapeutic conditioning used in preparation for hematopoietic stem-cell transplantation (SCT). VOD may occur in up to 62% of patients undergoing SCT, with onset generally within the first month after SCT. In severe cases, 100-day mortality is in excess of 80%. Current management consists of best supportive care, with no agents to date approved for treatment in the USA or the EU. Defibrotide, a polydisperse oligonucleotide, has been shown in phase II and III trials to improve complete response and survival in patients undergoing SCT with severe VOD. This article reviews our current understanding of VOD, and examines recent clinical findings on defibrotide for the treatment and prophylaxis of VOD
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors
BACKGROUND
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia.
METHODS
We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37).
RESULTS
The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, β3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse.
CONCLUSIONS
We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood InstituteβNational Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.
Characterization of the Metabolic Phenotype of Rapamycin-Treated CD8+ T Cells with Augmented Ability to Generate Long-Lasting Memory Cells
Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized.. than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells.Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy
IMPROVE-BMT: A Pilot Randomized Controlled Trial of Prehabilitation Exercise for Adult Hematopoietic Stem Cell Transplant Recipients
Background: There is limited evidence on the effects of aerobic and resistance training exercise interventions to improve physical function and patient-reported outcomes prior to autologous and allogeneic hematopoietic stem cell transplant (HSCT). IMPROVE-BMT was a single-site, pilot randomized controlled trial investigating the feasibility, acceptability, and safety of a pragmatic resistance training exercise program prior to HSCT compared to usual HSCT care. Secondary aims included differences in physical function between the exercise group (EX) and usual care control group (UC). Methods: Outcome measurements were assessed: prior to HSCT, on/around day of HSCT admission, +30 days post-HSCT, and +100 days post-HSCT. The exercise intervention was a home-based exercise program that incorporated resistance-band and bodyweight exercises. Results: Acceptability among participants was 83%; exercise adherence averaged at 92%; and there were zero exercise-related adverse or serious adverse events. The average pre-transplant exercise phase was 6.28 weeks (2.71β18.29 weeks). EX (n = 36) demonstrated larger increases in the six-minute walk test distance, short physical performance battery scores, and 30-s chair stands compared to UC (n = 38) and demonstrated significant within-group improvements for the six-minute walk test, the short physical performance battery, the 30-s chair stands, and the timed up-and-go test. Conclusions: IMPROVE-BMT demonstrates that pragmatic exercise is highly feasible for HSCT recipients and can potentially lead to enhanced recovery that may not be achievable in non-exercisers
- β¦