36,303 research outputs found
Sine-Gordon Soliton on a Cnoidal Wave Background
The method of Darboux transformation, which is applied on cnoidal wave
solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave
background. Interesting characteristics of the solution, i.e., the velocity of
solitons and the shift of crests of cnoidal waves along a soliton, are
calculated. Solutions are classified into three types (Type-1A, Type-1B,
Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change
Modeling and measurement of fault-tolerant multiprocessors
The workload effects on computer performance are addressed first for a highly reliable unibus multiprocessor used in real-time control. As an approach to studing these effects, a modified Stochastic Petri Net (SPN) is used to describe the synchronous operation of the multiprocessor system. From this model the vital components affecting performance can be determined. However, because of the complexity in solving the modified SPN, a simpler model, i.e., a closed priority queuing network, is constructed that represents the same critical aspects. The use of this model for a specific application requires the partitioning of the workload into job classes. It is shown that the steady state solution of the queuing model directly produces useful results. The use of this model in evaluating an existing system, the Fault Tolerant Multiprocessor (FTMP) at the NASA AIRLAB, is outlined with some experimental results. Also addressed is the technique of measuring fault latency, an important microscopic system parameter. Most related works have assumed no or a negligible fault latency and then performed approximate analyses. To eliminate this deficiency, a new methodology for indirectly measuring fault latency is presented
Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia
© Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio
Forecast Uncertainties in Macroeconomics Modelling: An Application to the UK Economy
This paper argues that probability forecasts convey information on the uncertainties that surround marco-economic forecasts in a manner which is straightforward and which is preferable to other alternatives, including the use of confidence intervals. Probability forecasts relating to UK output growth and inflation, obtained using a small macro-econometric model, are presented. We discuss in detail the probability that inflation will fall within the Bank of England's target range and that recession will be avoided, both as separate single events and jointly. The probability forecasts are also used to provide insights on the interrelatedness of output growth and inflation outcomes at different horizons.Probability Forecasting, Long Run Structural VARs, Macroeconometric Modelling, Forecast Evaluation, Probability Forecasts of Inflation and Output Growth
Gauge potential singularities and the gluon condensate at finite temperatures
The continuum limit of SU(2) lattice gauge theory is carefully investigated
at zero and at finite temperatures. It is found that the continuum gauge field
has singularities originating from center degrees of freedom being discovered
in Landau gauge. Our numerical results show that the density of these
singularities properly extrapolates to a non-vanishing continuum limit. The
action density of the non-trivial Z_2 links is tentatively identified with the
gluon condensate. We find for temperatures larger than the deconfinement
temperature that the thermal fluctuations of the embedded Z_2 gauge theory
result in an increase of the gluon condensate with increasing temperature.Comment: 3 pages, 2 figures, talk presented by K. Langfeld at the 19th
International Symposium on Lattice Field Theory (LATTICE2001), Berlin,
19.-24.8.2001, to appear in the proceeding
Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture
Radio-frequency spectroscopy is used to study pairing in the normal and
superfluid phases of a strongly interacting Fermi gas with imbalanced spin
populations. At high spin imbalances the system does not become superfluid even
at zero temperature. In this normal phase full pairing of the minority atoms is
observed. This demonstrates that mismatched Fermi surfaces do not prevent
pairing but can quench the superfluid state, thus realizing a system of fermion
pairs that do not condense even at the lowest temperature
A cortical surface-based meta-analysis of human reasoning
Recent advances in neuroimaging have augmented numerous findings in the human reasoning process but have yielded varying results. One possibility for this inconsistency is that reasoning is such an intricate cognitive process, involving attention, memory, executive functions, symbolic processing, and fluid intelligence, whereby various brain regions are inevitably implicated in orchestrating the process. Therefore, researchers have used meta-analyses for a better understanding of neural mechanisms of reasoning. However, previous meta-analysis techniques include weaknesses such as an inadequate representation of the cortical surface’s highly folded geometry. Accordingly, we developed a new meta-analysis method called Bayesian meta-analysis of the cortical surface (BMACS). BMACS offers a fast, accurate, and accessible inference of the spatial patterns of cognitive processes from peak brain activations across studies by applying spatial point processes to the cortical surface. Using BMACS, we found that the common pattern of activations from inductive and deductive reasoning was colocalized with the multiple-demand system, indicating that reasoning is a high-level convergence of complex cognitive processes. We hope surface-based meta-analysis will be facilitated by BMACS, bringing more profound knowledge of various cognitive processes
- …