31,108 research outputs found

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia

    Get PDF
    © Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio

    Hawking Radiation of Black p-Branes from Gravitational Anomaly

    Full text link
    We investigate the Hawking radiation of black pp-branes of superstring theories using the method of anomaly cancelation, specially, we use the method of [S. Iso, H. Umetsu and F. Wilczek, {\sl Phys. Rev. Lett.} {\bf 96}, 151302 (2006); {\sl Phys. Rev. D} {\bf 74}, 044017 (2006)]. The metrics of black pp-branes are spherically symmetric, but not the Schwarzschild type. In order to simplify the calculation, we first make a coordinate transformation to transform the metric to the Schwarzschild type. Then we calculate its energy-momentum flux from the method of anomaly cancelation of the above mentioned references. The obtained energy-momentum flux is equal to a black body radiation, the thermodynamic temperature of the radiation is equal to its Hawking temperature. And we find that the results are not changed for the original non-Schwarzschild type spherically symmetric metric.Comment: 19 pages Latex, some mistakes correcte

    Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture

    Full text link
    Radio-frequency spectroscopy is used to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances the system does not become superfluid even at zero temperature. In this normal phase full pairing of the minority atoms is observed. This demonstrates that mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature

    Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system

    Full text link
    Evolution of the mass function (MF) and radial distribution (RD) of the Galactic globular cluster (GC) system is calculated using an advanced and a realistic Fokker-Planck (FP) model that considers dynamical friction, disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP calculations with different initial cluster conditions, and then search a wide-parameter space for the best-fitting initial GC MF and RD that evolves into the observed present-day Galactic GC MF and RD. By allowing both MF and RD of the initial GC system to vary, which is attempted for the first time in the present Letter, we find that our best-fitting models have a higher peak mass for a lognormal initial MF and a higher cut-off mass for a power-law initial MF than previous estimates, but our initial total masses in GCs, M_{T,i} = 1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings include that our best-fitting lognormal MF shifts downward by 0.35 dex during the period of 13 Gyr, and that our power-law initial MF models well-fit the observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We also find that our results are insensitive to the initial distribution of orbit eccentricity and inclination, but are rather sensitive to the initial concentration of the clusters and to how the initial tidal radius is defined. If the clusters are assumed to be formed at the apocentre while filling the tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to ~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6

    Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity

    Full text link
    We present spatially resolved radio-frequency spectroscopy of a trapped Fermi gas with resonant interactions and observe a spectral gap at low temperatures. The spatial distribution of the spectral response of the trapped gas is obtained using in situ phase-contrast imaging and 3D image reconstruction. At the lowest temperature, the homogeneous rf spectrum shows an asymmetric excitation line shape with a peak at 0.48(4)ϵF\epsilon_F with respect to the free atomic line, where ϵF\epsilon_F is the local Fermi energy

    The D0 same-charge dimuon asymmetry and possibile new CP violation sources in the Bs−BˉsB_s-\bar{B}_s system

    Full text link
    Recently, the D0 collaboration reported a large CP violation in the same-sign dimuon charge asymmetry which has the 3.2σ3.2 \sigma deviation from the value estimated in the Standard Model. In this paper, several new physics models are considered: the MSSM, two Higgs doublet model, the recent dodeca model, and a new Z′Z' model. Generally, it is hard to achieve such a large CP violation consistently with other experimental constraints. We find that a scheme with extra non-anomalous U(1)′' gauge symmetry is barely consistent. In general, the extra Z′Z' gauge boson induces the flavor changing neutral current interactions at tree level, which is the basic reason allowing a large new physics CP violation. To preserve the U(1)′' symmetry at high energy, SU(2)L_L singlet exotic heavy quarks of mass above 1 TeV and the Standard Model gauge singlet scalars are introduced.Comment: 12 pages, 13 figure
    • …
    corecore