26,995 research outputs found
Queueing analysis of a canonical model of real-time multiprocessors
A logical classification of multiprocessor structures from the point of view of control applications is presented. A computation of the response time distribution for a canonical model of a real time multiprocessor is presented. The multiprocessor is approximated by a blocking model. Two separate models are derived: one created from the system's point of view, and the other from the point of view of an incoming task
Characterization of real-time computers
A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization
Synchronization and fault-masking in redundant real-time systems
A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration
Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system
Evolution of the mass function (MF) and radial distribution (RD) of the
Galactic globular cluster (GC) system is calculated using an advanced and a
realistic Fokker-Planck (FP) model that considers dynamical friction,
disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP
calculations with different initial cluster conditions, and then search a
wide-parameter space for the best-fitting initial GC MF and RD that evolves
into the observed present-day Galactic GC MF and RD. By allowing both MF and RD
of the initial GC system to vary, which is attempted for the first time in the
present Letter, we find that our best-fitting models have a higher peak mass
for a lognormal initial MF and a higher cut-off mass for a power-law initial MF
than previous estimates, but our initial total masses in GCs, M_{T,i} =
1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings
include that our best-fitting lognormal MF shifts downward by 0.35 dex during
the period of 13 Gyr, and that our power-law initial MF models well-fit the
observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We
also find that our results are insensitive to the initial distribution of orbit
eccentricity and inclination, but are rather sensitive to the initial
concentration of the clusters and to how the initial tidal radius is defined.
If the clusters are assumed to be formed at the apocentre while filling the
tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to
~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
Thermalization of quark-gluon matter by 2-to-2 and 3-to-3 elastic scatterings
Thermalization of quark-gluon matter is studied with a transport equation
that includes contributions of 2-to-2 and 3-to-3 elastic scatterings.
Thermalization time is related to the squared amplitudes for the elastic
scatterings that are calculated in perturbative QCD.Comment: LaTex, 6 pages, 3 figures, talk presented at the 19th international
conference on ultra-relativistic nucleus-nucleus collisions, Shanghai, China,
Nov. 200
The D0 same-charge dimuon asymmetry and possibile new CP violation sources in the system
Recently, the D0 collaboration reported a large CP violation in the same-sign
dimuon charge asymmetry which has the deviation from the value
estimated in the Standard Model. In this paper, several new physics models are
considered: the MSSM, two Higgs doublet model, the recent dodeca model, and a
new model. Generally, it is hard to achieve such a large CP violation
consistently with other experimental constraints. We find that a scheme with
extra non-anomalous U(1) gauge symmetry is barely consistent. In general,
the extra gauge boson induces the flavor changing neutral current
interactions at tree level, which is the basic reason allowing a large new
physics CP violation. To preserve the U(1) symmetry at high energy,
SU(2) singlet exotic heavy quarks of mass above 1 TeV and the Standard
Model gauge singlet scalars are introduced.Comment: 12 pages, 13 figure
- …