2 research outputs found
General relativistic effects on neutrino-driven wind from young, hot neutron star and the r-process nucleosynthesis
Neutrino-driven wind from young hot neutron star, which is formed by
supernova explosion, is the most promising candidate site for r-process
nucleosynthesis. We study general relativistic effects on this wind in
Schwarzschild geometry in order to look for suitable conditions for a
successful r-process nucleosynthesis. It is quantitatively discussed that the
general relativistic effects play a significant role in increasing entropy and
decreasing dynamic time scale of the neutrino-driven wind. Exploring wide
parameter region which determines the expansion dynamics of the wind, we find
interesting physical conditions which lead to successful r-process
nucleosynthesis. The conditions which we found realize in the neutrino-driven
wind with very short dynamic time scale ms and
relatively low entropy . We carry out the -process and
r-process nucleosynthesis calculation on these conditions by the use of our
single network code including over 3000 isotopes, and confirm quantitatively
that the second and third r-process abundance peaks are produced in the
neutrino-driven wind.Comment: Accepted for publication in Ap