2 research outputs found

    General relativistic effects on neutrino-driven wind from young, hot neutron star and the r-process nucleosynthesis

    Get PDF
    Neutrino-driven wind from young hot neutron star, which is formed by supernova explosion, is the most promising candidate site for r-process nucleosynthesis. We study general relativistic effects on this wind in Schwarzschild geometry in order to look for suitable conditions for a successful r-process nucleosynthesis. It is quantitatively discussed that the general relativistic effects play a significant role in increasing entropy and decreasing dynamic time scale of the neutrino-driven wind. Exploring wide parameter region which determines the expansion dynamics of the wind, we find interesting physical conditions which lead to successful r-process nucleosynthesis. The conditions which we found realize in the neutrino-driven wind with very short dynamic time scale τdyn∌6\tau_{\rm dyn} \sim 6 ms and relatively low entropy S∌140S \sim 140. We carry out the α\alpha-process and r-process nucleosynthesis calculation on these conditions by the use of our single network code including over 3000 isotopes, and confirm quantitatively that the second and third r-process abundance peaks are produced in the neutrino-driven wind.Comment: Accepted for publication in Ap
    corecore