14 research outputs found

    A Derivative-Free Mesh Optimization Algorithm for Mesh Quality Improvement and Untangling

    Get PDF
    We propose a derivative-free mesh optimization algorithm, which focuses on improving the worst element quality on the mesh. The mesh optimization problem is formulated as a min-max problem and solved by using a downhill simplex (amoeba) method, which computes only a function value without needing a derivative of Hessian of the objective function. Numerical results show that the proposed mesh optimization algorithm outperforms the existing mesh optimization algorithm in terms of improving the worst element quality and eliminating inverted elements on the mesh

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Design of Tool Clamping Device Based on a Shape Memory Alloy

    No full text
    This paper describes a tool-clamping/unclamping mechanism for application of a micro-spindle. The mechanism is based on one-way shape memory effect and interference-fit. The corresponding mathematical models and a few considerable design parameters are mentioned in this paper. Especially, necessary conditions for the clamping and unclamping operation are investigated through finite element analysis. The analysis results show that the differences between the diametral deformations of the tool holder in high temperature and that in low temperature are increased according to amounts of the interference. Thus the less interference between the tool-holder and the ring, the less tolerance to allow the clamping and unclamping operation because the inner diameter of the tool holder in high temperature should be smaller than the diameter of the tool shank, and that in low temperature should be larger than the diameter of the tool shank. In addition, the design for maximization of clamping force are investigated based on finite element analysis. The results show that the more amounts of the interference, the more clamping force. As the result, the interference should be considered as a important factor to maximize the tool clamping force.clos

    An ethyl methyl sulfone co-solvent eliminates macroscopic morphological instabilities of lithium metal anode

    No full text
    © 2019 The Royal Society of Chemistry. Lithium metal anodes suffer from a short cycle life, and the parasitic reactions of lithium with electrolytes are widely observed. Common sense is to avoid such reactions. Herein, we head in the opposite direction by using an oxidizing co-solvent, ethyl methyl sulfone, in the electrolyte, which addresses the 'dendrite' issue entirely, resulting in a dense and macroscopically smooth surface morphology of the plated lithium. However, a dendrite-free lithium metal anode does not necessarily exhibit a high coulombic efficiency

    Suppressed prefrontal neuronal firing variability and impaired social representation in IRSp53-mutant mice

    No full text
    © 2022, Kim et al.Social deficit is a major feature of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder, but its neural mechanisms remain unclear. Here, we examined neuronal discharge characteristics in the medial prefrontal cortex (mPFC) of IRSp53/Baiap2-mutant mice, which show social deficits, during social approach. We found a decrease in the proportion of IRSp53-mutant excitatory mPFC neurons encoding social information, but not that encoding non-social information. In addition, the firing activity of IRSp53-mutant neurons was less differential between social and non-social targets. IRSp53-mutant excitatory mPFC neurons displayed an increase in baseline neuronal firing, but decreases in the variability and dynamic range of firing as well as burst firing during social and non-social target approaches compared to wild-type controls. Treatment of memantine, an NMDA receptor antagonist that rescues social deficit in IRSp53-mutant mice, alleviates the reduced burst firing of IRSp53-mutant pyramidal mPFC neurons. These results suggest that suppressed neuronal activity dynamics and burst firing may underlie impaired cortical encoding of social information and social behaviors in IRSp53-mutant mice.11Nsciescopu

    Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice

    No full text
    © 2021, The Author(s).NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions to promote high-frequency (>80 Hz) Pv neuronal burst firing and social cognition. Shank2–/– mice, displaying improved sociability upon NMDAR activation, show impaired cortical social representation and inhibitory neuronal burst firing. Cortical Shank2–/– Pv neurons show decreased NMDAR activity, which suppresses the cooperation between NMDARs and gap junctions (GJs) for normal burst firing. Shank2–/– Pv neurons show compensatory increases in GJ activity that are not sufficient for social rescue. However, optogenetic boosting of Pv neuronal bursts, requiring GJs, rescues cortical social cognition in Shank2–/– mice, similar to the NMDAR-dependent social rescue. Therefore, NMDARs and gap junctions cooperate to promote cortical Pv neuronal bursts and social cognition.11Nsciescopu
    corecore