847 research outputs found

    An Efficient Spectral Leakage Filtering for IEEE 802.11af in TV White Space

    Full text link
    Orthogonal frequency division multiplexing (OFDM) has been widely adopted for modern wireless standards and become a key enabling technology for cognitive radios. However, one of its main drawbacks is significant spectral leakage due to the accumulation of multiple sinc-shaped subcarriers. In this paper, we present a novel pulse shaping scheme for efficient spectral leakage suppression in OFDM based physical layer of IEEE 802.11af standard. With conventional pulse shaping filters such as a raised-cosine filter, vestigial symmetry can be used to reduce spectral leakage very effectively. However, these pulse shaping filters require long guard interval, i.e., cyclic prefix in an OFDM system, to avoid inter-symbol interference (ISI), resulting in a loss of spectral efficiency. The proposed pulse shaping method based on asymmetric pulse shaping achieves better spectral leakage suppression and decreases ISI caused by filtering as compared to conventional pulse shaping filters

    On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method

    Full text link
    Consider a full-duplex (FD) multiuser system where an FD base station (BS) is designed to simultaneously serve both downlink users and uplink users in the presence of half-duplex eavesdroppers (Eves). Our problem is to maximize the minimum secrecy rate (SR) among all legitimate users by proposing a novel user grouping method, where information signals at the FD-BS are accompanied with artificial noise to degrade the Eves' channel. The SR problem has a highly nonconcave and nonsmooth objective, subject to nonconvex constraints due to coupling between the optimization variables. Nevertheless, we develop a path-following low-complexity algorithm, which invokes only a simple convex program of moderate dimensions at each iteration. We show that our path-following algorithm guarantees convergence at least to a local optima. The numerical results demonstrate the merit of our proposed approach compared to existing well-known ones, i.e., conventional FD and nonorthogonal multiple access.Comment: 6 pages, 3 figure

    Robust Beamforming for Secrecy Rate in Cooperative Cognitive Radio Multicast Communications

    Full text link
    In this paper, we propose a cooperative approach to improve the security of both primary and secondary systems in cognitive radio multicast communications. During their access to the frequency spectrum licensed to the primary users, the secondary unlicensed users assist the primary system in fortifying security by sending a jamming noise to the eavesdroppers, while simultaneously protect themselves from eavesdropping. The main objective of this work is to maximize the secrecy rate of the secondary system, while adhering to all individual primary users' secrecy rate constraints. In the case of passive eavesdroppers and imperfect channel state information knowledge at the transceivers, the utility function of interest is nonconcave and involved constraints are nonconvex, and thus, the optimal solutions are troublesome. To address this problem, we propose an iterative algorithm to arrive at a local optimum of the considered problem. The proposed iterative algorithm is guaranteed to achieve a Karush-Kuhn-Tucker solution.Comment: 6 pages, 4 figures, IEEE ICC 201

    Joint Fractional Time Allocation and Beamforming for Downlink Multiuser MISO Systems

    Full text link
    It is well-known that the traditional transmit beamforming at a base station (BS) to manage interference in serving multiple users is effective only when the number of users is less than the number of transmit antennas at the BS. Non-orthogonal multiple access (NOMA) can improve the throughput of users with poorer channel conditions by compromising their own privacy because other users with better channel conditions can decode the information of users in poorer channel state. NOMA still prefers that the number of users is less than the number of antennas at the BS transmitter. This paper resolves such issues by allocating separate fractional time slots for serving the users with similar channel conditions. This enables the BS to serve more users within the time unit while the privacy of each user is preserved. The fractional times and beamforming vectors are jointly optimized to maximize the system's throughput. An efficient path-following algorithm, which invokes a simple convex quadratic program at each iteration, is proposed for the solution of this challenging optimization problem. Numerical results confirm its versatility.Comment: IEEE Communications Letters (To Appear
    • …
    corecore