122 research outputs found

    Dynamics of trace and rare earth elements during long-term (over 4 years) decomposition in Scots pine and Norway spruce forest stands, Southern Sweden

    Get PDF
    The temporal dynamics of 33 major, trace, and rare earth elements (REEs) were studied in the litter samples containing Swedish Norway spruce (Picea abies) (NSL) and Scots pine (Pinus sylvestris) (SPL), with the aim to assess their release and accumulation dynamics. Litter bags (8 × 8 cm) were incubated in paired monoculture stands with both the species for up to 5 years from 1979 to 1984 according to a randomized block design comprising 25 blocks (1 × 1 m) within an area of 625 m2. The decomposition rate was slightly higher for Scots pine litter (k = 0.315) than for Norway spruce litter (k = 0.217). During litter decomposition, at ∼70% accumulated mass loss (AML), the concentration of trace elements increased by >50% in both litter types compared to initial concentrations. The concentration change took place in a non-linear pattern, and polynomial quadratic regression between concentration change and accumulated mass loss resulted in significant relationships (adj R2 = 0.20–0.97; p = 0.15–<0.0001). The changes in concentration and amount of trace elements resulted in two main types of dynamics: 1) both concentration and amount increased for Fe, Al, Ti, Cu, Mo, V, Zr, Sb, As, Cs, Pb, Th, and U; 2) concentration increased but amount decreased for Ni, Zn, Li, and Sr. The amount of REEs increased from ∼3-fold to 99-fold from the beginning to the end of incubation, suggesting accumulation during litter decomposition. The dynamics of different REEs were similar in their change patterns in the two litters. Different REEs had generally identical change patterns during incubation, which is reflected in the high correlations among them (r2 = >0.95). A general upward convexity in the dynamics suggests that if further incubated in the field, decomposing litter could have accumulated more REEs in the organic matter. The results of this study can be useful for future studies in other ecosystems including metal-contaminated sites or element-depleted sites. Plant litter accumulation, its decomposition, and build-up of humic substances in the decomposing organic matter can act as a sink for elements and can be used as a management tool for ecological amelioration of metal-contaminated sites as well as natural systems that are impoverished, especially recuperating sites. The study’s findings have implications beyond such sites and can be useful in any research that seeks to understand the patterns of accumulation and release related to decomposition in different ecosystems

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018

    Vascular effects of estrogen in type II diabetic postmenopausal women

    Get PDF
    AbstractOBJECTIVESWe assessed the effects of estrogen on vascular dilatory and other homeostatic functions potentially affected by nitric oxide (NO)-potentiating properties in type II diabetic postmenopausal women.BACKGROUNDThere is a higher cardiovascular risk in diabetic women than in nondiabetic women. This would suggest that women with diabetes do not have the cardioprotection associated with estrogen.METHODSWe administered placebo or conjugated equine estrogen, 0.625 mg/day for 8 weeks, to 20 type II diabetic postmenopausal women in a randomized, double-blinded, placebo-controlled, cross-over design.RESULTSCompared with placebo, estrogen tended to lower low-density lipoprotein (LDL) cholesterol levels by 15 ± 23% (p = 0.007) and increase high-density lipoprotein (HDL) cholesterol levels by 8 ± 16% (p = 0.034). Thus, the ratio of LDL to HDL cholesterol levels significantly decreased with estrogen, by 20 ± 24%, as compared with placebo (p = 0.001). Compared with placebo, estrogen tended to increase triglyceride levels by 16 ± 48% and lower glycosylated hemoglobin levels by 3 ± 13% (p = 0.295 and p = 0.199, respectively). However, estrogen did not significantly improve the percent flow-mediated dilatory response to hyperemia (17 ± 75% vs. placebo; p = 0.501). The statistical power to accept our observation was 81.5%. Compared with placebo, estrogen did not significantly change E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1 or matrix metalloproteinase-9 levels. Compared with placebo, estrogen tended to decrease tissue factor antigen and increase tissue factor activity levels by 7 ± 46% and 5 ± 34%, respectively (p = 0.321 and p = 0.117, respectively) and lower plasminogen activator inhibitor-1 levels by 16 ± 31% (p = 0.043).CONCLUSIONSThe effects of estrogen on endothelial, vascular dilatory and other homeostatic functions were less apparent in type II diabetic postmenopausal women, despite the beneficial effects of estrogen on lipoprotein levels

    SEALONE (Safety and Efficacy of Coronary Computed Tomography Angiography with Low Dose in Patients Visiting Emergency Room) trial: study protocol for a randomized controlled trial

    Get PDF
    Objective Chest pain is one of the most common complaints in the emergency department (ED). Cardiac computed tomography angiography (CCTA) is a frequently used tool for the early triage of patients with low- to intermediate-risk acute chest pain. We present a study protocol for a multicenter prospective randomized controlled clinical trial testing the hypothesis that a low-dose CCTA protocol using prospective electrocardiogram (ECG)-triggering and limited-scan range can provide sufficient diagnostic safety for early triage of patients with acute chest pain. Methods The trial will include 681 younger adult (aged 20 to 55) patients visiting EDs of three academic hospitals for acute chest pain or equivalent symptoms who require further evaluation to rule out acute coronary syndrome. Participants will be randomly allocated to either low-dose or conventional CCTA protocol at a 2:1 ratio. The low-dose group will undergo CCTA with prospective ECG-triggering and restricted scan range from sub-carina to heart base. The conventional protocol group will undergo CCTA with retrospective ECG-gating covering the entire chest. Patient disposition is determined based on computed tomography findings and clinical progression and all patients are followed for a month. The primary objective is to prove that the chance of experiencing any hard event within 30 days after a negative low-dose CCTA is less than 1%. The secondary objectives are comparisons of the amount of radiation exposure, ED length of stay and overall cost. Results and Conclusion Our low-dose protocol is readily applicable to current multi-detector computed tomography devices. If this study proves its safety and efficacy, dose-reduction without purchasing of expensive newer devices would be possible

    Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling.</p> <p>Methods</p> <p>We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted.</p> <p>Results</p> <p>We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another.</p> <p>Conclusion</p> <p>Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic diversity and deviation in heterozygosity was performed and the polymorphisms of the above genes among the five populations were substantially differentiated from one another. Further studies of osteoporosis could utilize the polymorphisms identified in our data since they may have important implications for the selection of highly informative SNPs for future association studies.</p

    Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte

    Get PDF
    Background Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. Methods Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. Results Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. Conclusions This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.Support was provided by: the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780) http://www.nrf.re.kr/

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA&apos;s TEMPO and ESA&apos;s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Effects of Severe Plastic Deformation on Mechanical Properties and Corrosion Behavior of Magnesium Alloys

    No full text
    Magnesium alloys were produced with extrusion, screw rolling (SR) and multi-directional forging (MDF) processes. Various temperatures were used for SR and MDF. The tensile test was carried out to measure the mechanical properties and immersion test in 3.5 wt% NaCl saturated with Mg(OH)(2) was run to measure the corrosion rate. It was found that the grain size increased gradually with increasing the MDF or SR temperature. The increase in the MDF or SR temperature resulted in decrease in yield strength due to increase in grain size. However, the corrosion rate decreased after MDF and SR. Furthermore, the increase in MDF or SR temperature resulted in more reduction in the corrosion rate due to reduction of galvanic cells by dissolution of the intermetallic phases into the matrix.N

    Corrosion behavior of Mg–Mn–Ca alloy: Influences of Al, Sn and Zn

    No full text
    The effects of different elements including Al, Sn and Zn with ability of solution hardening on corrosion behavior of a Mg alloy have been studied. The microstructure was analyzed and the electrochemical and immersion techniques were used for corrosion studies. Scanning kelvin probe force microscopy (SKPFM) was utilized to analyze the volta-potential distribution on the surface. It was found that all additives reduced the corrosion resistance; however, Zn decreased the corrosion resistance less than Al and Sn. The corrosion rate was quantitatively explained through volta-potential difference and the second phase fraction. Keywords: Magnesium alloy, Extrusion, Corrosion rate, Volta-potential, Secondary phas
    corecore