11 research outputs found

    Insights into structural, spectroscopic, and hydrogen bonding interaction patterns of nicotinamide–oxalic acid (form I) salt by using experimental and theoretical approaches

    Get PDF
    In the present work, nicotinamide–oxalic acid (NIC-OXA, form I) salt was crystallized by slow evaporation of an aqueous solution. To understand the molecular structure and spectroscopic properties of NIC after co-crystallization with OXA, experimental infrared (IR), Raman spectroscopic signatures, X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC) techniques were used to characterize and validate the salt. The density functional theory (DFT) methodology was adopted to perform all theoretical calculations by using the B3LYP/6-311++G (d, p) functional/basis set. The experimental geometrical parameters were matched in good correlation with the theoretical parameters of the dimer than the monomer, due to the fact of covering the nearest hydrogen bonding interactions present in the crystal structure of the salt. The IR and Raman spectra of the dimer showed the red (downward) shifting and broadening of bands among (N15-H16), (N38-H39), and (C13=O14) bonds of NIC and (C26=O24), (C3=O1), and (C26=O25) groups of OXA, hence involved in the formation of NIC-OXA salt. The atoms in molecules (AIM) analysis revealed that (N8-H9···O24) is the strongest (conventional) intermolecular hydrogen bonding interaction in the dimer model of salt with the maximum value of interaction energy −12.1 kcal mol−1. Furthermore, the natural bond orbital (NBO) analysis of the Fock matrix showed that in the dimer model, the (N8-H9···O24) bond is responsible for the stabilization of the salt with an energy value of 13.44 kcal mol−1. The frontier molecular orbitals (FMOs) analysis showed that NIC-OXA (form I) salt is more reactive and less stable than NIC, as the energy gap of NIC-OXA (form I) salt is less than that of NIC. The global and local reactivity descriptor parameters were calculated for the monomer and dimer models of the salt. The electrophilic, nucleophilic, and neutral reactive sites of NIC, OXA, monomer, and dimer models of salt were visualized by plotting the molecular electrostatic potential (MESP) surface. The study provides valuable insights into combining both experimental and theoretical results that could define the physicochemical properties of molecules

    Molecular Structure, Hydrogen Bonding Interactions and Docking Simulations of Nicotinamide (Monomeric and Trimeric Models) by Using Spectroscopy and Theoretical Approach

    No full text
    The present work focuses on the structural properties, spectroscopic signatures, intermolecular hydrogen bonding interactions, chemical and biological activity of nicotinamide (NIC) based on its monomeric and trimeric models using density functional theory and vibrational spectroscopy. FT-IR and FT-Raman spectra were obtained using the double-side forward-backward acquisition mode under vacuum. UV-Vis absorption spectra were recorded in methanol and compared with the calculated values. Geometry optimization and vibrational wavenumbers were obtained with the aid of Gaussian 09 program packages. The structural analysis of NIC revealed that the trimeric model was in better agreement with the experimental values than the monomer due to the incorporation of nearest hydrogen bond interactions. Spectroscopic results showed that NH2 and C = O groups of NIC were involved in intermolecular interactions in the trimeric model. The natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses determined the presence, strength as well as nature of the hydrogen bonds were partially covalent. The lesser value of the HOMO-LUMO energy gap for the trimeric model indicated higher reactivity than monomer. Moreover, chemical reactivity was calculated using molecular electrostatic potential surface (MESP) and reactivity descriptors. The docking studies for NIC with several targets explored its biological activity.</p

    Tadalafil–Malonic Acid Cocrystal: Physicochemical Characterization, pH-Solubility, and Supersaturation Studies

    No full text
    The purpose of this study was to enhance the solubility and dissolution of a poorly water-soluble drug, tadalafil (TDF), by cocrystal formation with malonic acid (MOA), to characterize the cocrystal structure and to quantify the cocrystal solution behavior. The crystal structure revealed a 1:1 stoichiometry, wherein the TDF molecules form a double layered structure through N–H···OC interactions linked to a catemeric chain of MOA molecules via O–H···O hydrogen bonds. Cocrystal solubility advantage (SA defined as <i>S</i><sub>cocrystal</sub>/<i>S</i><sub>drug</sub>) or supersaturation index was determined from eutectic point measurements to be 102 to 129 in the pH range of 1 to 3. Cocrystal dissolution generated supersaturation levels (<i>C</i><sub>max</sub>/<i>S</i><sub>drug</sub>) of 30 in buffer and 120 in the presence of a nucleation inhibitor, HPMC. The amorphous form of TDF generated supersaturation three times lower than cocrystal in buffer, and not significantly different from cocrystal in the presence of HPMC. Thus, supersaturation index is a valuable metric for assessing the risk of cocrystal conversion during kinetic studies and for predicting conditions when the usage of a precipitation inhibitor may significantly increase cocrystal exposure levels

    Tribochemistry of imidazolium and phosphonium bis(oxalato)borate ionic liquids: Understanding the differences

    No full text
    Lubrication properties of imidazolium and phosphonium bis(oxalato)borate ionic liquids (ILs) are compared in a reciprocating sliding contact at 80 °C and 140 °C. Both the influence of the alkyl chain length and the cation architecture on friction, wear and lubricant breakdown are investigated. Imidazolium ILs showed lower friction than phosphonium ILs though only phosphonium-based ILs reduced wear. A longer alkyl chain reduced friction only in the case of the imidazolium-based ILs. Analysis of the wear scars was consistent with chemical breakdown solely of the anion. Chemical changes in the ILs after the tribotests were more pronounced for imidazolium-based ILs, and comparison of breakdown and tribofilm formation implicated catalysis by the imidazolium center, which, in turn, had a strong dependence on the surface self-assembly.Validerad;2023;Nivå 2;2023-02-13 (joosat);Funder: Australian Research Council (DP180103682)Licens fulltext: CC BY License</p

    Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid

    No full text
    Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]−), bis(oxalato)borate ([BOB]−), and bis(salicylato)borate ([BScB]−). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.Validerad;2024;Nivå 2;2024-05-06 (hanlid);Funder: Villum Foundation; Full text license: CC BY</p

    Molecular Architecture Effects on Bulk Nanostructure in Bis(Orthoborate) Ionic Liquids

    No full text
    A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]−, bis(mandelato)borate, [BMB]− and bis(salicylato)borate, [BScB]−, are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]− by [BMB]−, or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.Licens fulltext: CC BY-NC License</p
    corecore