757 research outputs found

    Entanglement Cost of Antisymmetric States and Additivity of Capacity of Some Quantum Channel

    Full text link
    We study the entanglement cost of the states in the contragredient space, which consists of (d1)(d-1) dd-dimensional systems. The cost is always log2(d1)\log_2 (d-1) ebits when the state is divided into bipartite \C^d \otimes (\C^d)^{d-2}. Combined with the arguments in \cite{Matsumoto02}, additivity of channel capacity of some quantum channels is also shown.Comment: revtex 4 pages, no figures, small changes in title and author's affiliation and some typo are correcte

    Entanglement Cost of Three-Level Antisymmetric States

    Get PDF
    We show that the entanglement cost of the three-dimensional antisymmetric states is one ebit.Comment: 8page

    Remarks on additivity of the Holevo channel capacity and of the entanglement of formation

    Get PDF
    The purpose of these notes is to discuss the relation between the additivity questions regarding the quantities (Holevo) capacity of a quantum channel T and entanglement of formation of a given bipartite state. In particular, using the Stinespring dilation theorem, we give a formula for the channel capacity involving entanglement of formation. This can be used to show that additivity of the latter for some states can be inferred from the additivity of capacity for certain channels. We demonstrate this connection for a family of group--covariant channels, allowing us to calculate the entanglement cost for many states, including some where a strictly smaller upper bound on the distillable entanglement is known. This is presented in a general framework, extending recent findings of Vidal, Dur and Cirac (e-print quant-ph/0112131). In an appendix we speculate on a general relation of superadditivity of the entanglement of formation, which would imply both the general additivity of this function under tensor products and of the Holevo capacity (with or without linear cost constraints)

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Ionization Source of a Minor-axis Cloud in the Outer Halo of M82

    Get PDF
    The M82 `cap' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, Ha, [NII]6583/Ha, and [SII]6716,6731/Ha maps were obtained with sub-arcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright Ha emitting clouds within the cap. The emission line widths (< 100 km s^-1 FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v_shock = 40--80 km s^-1) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f_esc > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.Comment: 7 pages, 5 figures, 2 tables; Accepted for publication in Ap

    Thermal Conductivity of the Pyrochlore Superconductor KOs2O6: Strong Electron Correlations and Fully Gapped Superconductivity

    Full text link
    To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6K), the thermal conductivity was measured down to low temperatures (~Tc/100). We found that the quasiparticle mean free path is strikingly enhanced below a transition at Tp=7.5K, indicating enormous electron inelastic scattering in the normal state. In a magnetic field the conduction at T ->0K is nearly constant up to ~0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast to the previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Bio-implant as a novel restoration for tooth loss

    Get PDF
    published_or_final_versio

    A Possible Phase Transition in beta-pyrochlore Compounds

    Full text link
    We investigate a lattice of interacting anharmonic oscillators by using a mean field theory and exact diagonalization. We construct an effective five-state hopping model with intersite repulsions as a model for beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase transition line from large to small oscillation amplitude phases as temperature decreases. We also discuss the possibility of a phase with local electric polarizations. Our theory can explain the origin of the mysterious first order transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
    corecore