2,297 research outputs found
Stabilizing a gaseous optical laser
Frequency of gaseous optical laser can be stabilized by sinusoidally modulating the geometry of the cavity. Fabry-Perot dielectric mirrors are mounted in two Invar blocks that are connected by four magnetorestrictive bars. Each bar has three coils to sinusoidally modulate system. Ac establishes frequency, and dc the average value; both are supplied to coil from control system
Method and apparatus for stabilizing a gaseous optical maser Patent
Gas laser frequency stabilized by position of mirrors in resonant cavit
Food Ingredients Recognition through Multi-label Learning
Automatically constructing a food diary that tracks the ingredients consumed
can help people follow a healthy diet. We tackle the problem of food
ingredients recognition as a multi-label learning problem. We propose a method
for adapting a highly performing state of the art CNN in order to act as a
multi-label predictor for learning recipes in terms of their list of
ingredients. We prove that our model is able to, given a picture, predict its
list of ingredients, even if the recipe corresponding to the picture has never
been seen by the model. We make public two new datasets suitable for this
purpose. Furthermore, we prove that a model trained with a high variability of
recipes and ingredients is able to generalize better on new data, and visualize
how it specializes each of its neurons to different ingredients.Comment: 8 page
The Role of Cattle Dung in Seed Dispersal of Major Species in a \u3ci\u3eZoysia japonica\u3c/i\u3e Pasture in Japan
To evaluate the role of cattle dung in seed dispersal of major species in Zoysia japonica pasture in Japan, we investigated the species composition and density of seeds in cattle dung by means of a germination test. Of 20 major species which had a mean coverage of more than 0.1%, 90% were detected as seeds in cattle dung. In addition, the species composition and density of seeds in cattle dung differed among three sampling seasons. Seeds of the six most prevalent species in terms of coverage were detected from cattle dung during the growing season. Hence, we conclude that it is possible for major species to invade other grasslands and pastures by means of cattle dung
Magnetotransport Study of the Canted Antiferromagnetic Phase in Bilayer Quantum Hall State
Magnetotransport properties are investigated in the bilayer quantum Hall
state at the total filling factor . We measured the activation energy
elaborately as a function of the total electron density and the density
difference between the two layers. Our experimental data demonstrate clearly
the emergence of the canted antiferromagnetic (CAF) phase between the
ferromagnetic phase and the spin-singlet phase. The stability of the CAF phase
is discussed by the comparison between experimental results and theoretical
calculations using a Hartree-Fock approximation and an exact diagonalization
study. The data reveal also an intrinsic structure of the CAF phase divided
into two regions according to the dominancy between the intralayer and
interlayer correlations.Comment: 6 pages, 7 figure
Enhanced Two-Photon Absorption in a Hollow-Core Photonic Bandgap Fiber
We show that two-photon absorption (TPA) in Rubidium atoms can be greatly
enhanced by the use of a hollow-core photonic bandgap fiber. We investigate
off-resonant, degenerate Doppler-free TPA on the 5S1/2 - 5D5/2 transition and
observe 1% absorption of a pump beam with a total power of only 1 mW in the
fiber. These results are verified by measuring the amount of emitted blue
fluorescence and are consistent with the theoretical predictions which indicate
that transit time effects play an important role in determining the two-photon
absorption cross-section in a confined geometry.Comment: 5 pages, 6 figure
Quantum cloning with an optical fiber amplifier
It has been shown theoretically that a light amplifier working on the
physical principle of stimulated emission should achieve optimal quantum
cloning of the polarization state of light. We demonstrate close-to-optimal
universal quantum cloning of polarization in a standard fiber amplifier for
telecom wavelengths. For cloning 1 --> 2 we find a fidelity of 0.82, the
optimal value being 5/6 = 0.83.Comment: 4 pages, 3 figure
- …