49 research outputs found

    Alloying Effect of Nickel–Cobalt Based Binary Metal Catalysts Supported on α-Alumina for Ammonia Decomposition

    Get PDF
    The development of a base metal catalyst which shows high performance for the ammonia (NH3) decomposition have been conducted. For the Ni and Co based catalysts using α-Al2O3 as a support, the performance of the single metal catalysts was lower than that of the γ-Al2O3 supported catalysts. However, its performance was greatly improved by using a binary metal catalyst system. Based on the XRD analysis, it was found that Ni and Co supported on α-Al2O3 were alloyed. TEM observation confirmed that the metal particle size in the α-Al2O3 supported Ni-Co catalyst is smaller than that of the single metal catalysts (Ni/α-Al2O3 or Co/α-Al2O3). Furthermore, in-situ XRD and H2-TPR measurements revealed that the Ni-Co alloy forms during the reduction process. The optimum mixing ratio of Ni and Co components was 1:1, and the optimum pre-reduction temperature before the performance test was 600 °C. Studies on the differences of support oxides proved that the improvement effect by alloying can be similarly obtained with the SiO2 supported catalyst, indicating that the catalyst using the support with less interaction between the active metal and the support is more likely to obtain the performance improvement effect by alloying

    ELUTION BEHAVIOR OF DEPHOSPHORAZATION SLAG TO VARIOUS ACIDS AND EFFECT OF ADDITION OF AQUEOUS ALKALI TO ACID ELUATE

    Get PDF
    We recently developed a method for efficiently recovering phosphoric acid from dephosphorization slag. The most important processes in this recovery technique involve elution of the dephosphorization slag into an acid solution (acid-elution process) and the addition of an alkali to the acid eluate to form a precipitate (alkali-precipitation process). Ultimately, we settled the use of an aqueous nitric acid solution for the acid-elution step, while an aqueous ammonia solution proved to be the optimal choice to accomplish alkali precipitation. Herein, we describe the procedures used to compare the utility of nitric acid with that of hydrochloric acid, sulfuric acid, and citric acid in the acid-elution process, and describe our comparison of an aqueous sodium hydroxide with that of an aqueous ammonia in the alkali-precipitation process. Finally, we summarize our findings on the acids and alkalis that proved to be suitable for this technology

    Carbon Deposition Assisting the Enhancement of Catalytic Activity with Time-on-Stream in the Dehydrogenation of Isobutane on NiO/Al2O3

    Get PDF
    In the transformation reaction of alkanes to alkenes via catalytic dehydrogenation, it is generally accepted that the so-called catalytic deactivation behavior will occur. This phenomenon causes a drastic reduction in activity with time-on-stream. It is understood that carbon deposition generated during the reaction then covers the surface of the catalyst, and this leads to a drastic decrease in activity. However, contrary to this common wisdom, our laboratory reported that the dehydrogenation of isobutane to isobutene on NiO/γ-Al2O3 within a specific range of NiO loading in the presence of CO2 actually improved the yield of isobutene with time-on-stream. Since few such cases have been reported, in this study, isobutane was dehydrogenated in the presence of CO2 using NiO/α-Al2O3 as the catalyst with 20% NiO loading and improvement was again observed. In order to investigate the cause of the improvement, both NiO/γ-Al2O3 and NiO/α-Al2O3 with 20% NiO loading were examined in detail following the reaction. According to TEM analysis, both catalysts were covered with a large amount of carbon deposition after the reaction, but there was a difference in the types. The carbon deposition on NiO/γ-Al2O3 had a fibrous nature while that on NiO/α-Al2O3 appeared to be a type of nanowire. Raman spectroscopy revealed that the carbonaceous crystal growth properties of two forms differed depending on the support. In particular, a catalytically active species of metallic nickel was formed in a high degree of dispersion in and on the above two forms of carbon deposition during the reaction, and this resulted in high activity even if the catalyst was covered with a carbon deposition

    Enhancement of the Catalytic Activity Associated with Carbon Deposition Formed on NiO/Al2O3 during the Dehydrogenation of Ethane and Propane

    Get PDF
    In the recent study, the dehydrogenation of isobutane to isobutene was accomplished using a NiO/γ-Al2O3 catalyst, and significant improvement in the time-on-stream yield of isobutene was accomplished. During the normal catalytic dehydrogenation of alkanes, the catalyst is covered by the carbon deposition that is generated during the reaction, which drastically reduces activity with time-on-stream. Therefore, no examples of the catalytic dehydrogenation of isobutane have yet been reported. This study used either ethane or propane as a source of isobutane to examine whether the activity was improved with time-on-stream. As a result, in the dehydrogenations of both ethane and propane on a NiO/γ-Al2O3 catalyst, the catalytic activity decreased with time-on-stream when the supporting amounts of NiO was small. By contrast, when the supporting amount of NiO was large, the catalytic activity improved with time-on-stream. The results using a NiO/γ-Al2O3 catalyst with small and large NiO loadings were similar to those of isobutane dehydrogenation and it was confirmed that the dehydrogenation activity was improved with time-on-stream in the catalytic dehydrogenations of ethane, propane, and isobutane using large NiO loadings. Intermediate behavior using a moderate amount of NiO loading, which was not detected in the dehydrogenation of isobutane, was also observed, which resulted in a maximum yield of either ethylene or propylene at 2.0 or 3.25 h on-stream, respectively. We concluded that the reason the catalytic activity did not improve with time-on-stream when using a NiO/γ-Al2O3 catalyst was because the supporting amount of NiO was too small. These results show that activity with time-on-stream could also be improved in the dehydrogenations of other alkanes

    Recovery of Phosphoric Acid and Calcium Phosphate from Dephosphorization Slag

    Get PDF
    We previously reported that by adding aqueous ammonia to the nitric acid extract of dephosphorization slag, a solid with enhanced concentrations of calcium and phosphorus, could be recovered. The present study shows that a considerable amount of manganese and iron also remains, however, which creates difficulties in directly reusing the recovered solid. The recovered material was again dissolved in nitric acid and the resultant filtrate was passed through a cation exchange resin that mostly removed various cations from the yield of an aqueous phosphoric acid solution. The recovery of phosphoric acid was confirmed via 31P NMR. Furthermore, when calcium nitrate was added to this aqueous solution, calcium hydroxyapatite, which was converted to calcium phosphate after the calcination at 1073 K. Phosphoric acid, calcium hydroxyapatite, and calcium phosphate are raw materials that are used to produce various industrial products containing phosphorus, and the suggested process greatly improves the technology for recovering phosphorus-containing materials that are mostly used as fertilizer

    KEY FACTORS FOR THE SEPARATION OF SILICON AND IRON DURING PHOSPHORUS RECOVERY FROM SLAG DISCHARGED FROM THE DOUBLE-SLAG REFINING PROCESS

    Get PDF
    In the present study, we developed a technology for concentrating and recovering phosphorus from slag-like phosphorus-containing unused resources and applied it to slag discharged during the latest steelmaking process, that is, double-slag refining process (DRP). The technology we developed consists of the following four processes: Process (1) is the initial acid elution; Process (2) involves alkali precipitation; Process (3) is the second acid elution; and, Process (4) utilizes ion-exchange. In Process (1), the addition of DPR slag to 0.5 M of a nitric acid solution for 24 min resulted in sufficient phosphorus dissolution. In Process (2), ammonia was added to the dissolved solution, and phosphorus was precipitated with high efficiency. The timing of the addition of ammonia significantly influenced the removal of silicon and iron, which would have been inconvenient to accomplish in subsequent processes. In Process (3), the precipitation obtained in Process (2) was re-dissolved in a nitric acid solution. The dissolution of phosphorus together with other elements progressed sufficiently, and we confirmed that silicon could be completely separated as silica by using high-concentration nitric acid at this stage. The fact that silicon could be removed during Process (3) was an important finding, since silicon could not have been separated in the Process (4). In Process (4), by passing the phosphorus-containing solution obtained in Process (3) through an ion exchange resin, elements other than phosphorus and silicon could be removed, which confirms that the range of applications for this technology could be expanded

    Gas-Phase Epoxidation of Propylene to Propylene Oxide on a Supported Catalyst Modified with Various Dopants

    Get PDF
    In the present study, the production of propylene oxide (PO) from propylene via gas-phase epoxidation was investigated using various catalysts. Although Ag is known to be a highly active catalyst for the epoxidation of ethylene, it was not active in the present reaction. Both Al and Ti showed high levels of activity, however, which resulted in confusion. The present study was conducted to solve such confusion. Although the employment of MCM-41 modified with Ti and/or Al was reported as an active catalyst for epoxidation, the combination resulted in the formation of PO at a less than 0.1% yield. Since this research revealed that the acidic catalyst seemed favorable for the formation of PO, versions of ZSM-5 that were both undoped and doped with Na, Ti, and Ag were used as catalysts. In these cases, small improvements of 0.67% and 0.57% were achieved in the PO yield on H‒ZSM-5 and Ti‒ZSM-5, respectively. Based on the results of the Ti-dopant and acidic catalysts, Ag metal doped on carbonate species with a smaller surface area was used as a catalyst. As reported, Ag‒Na/CaCO3 showed a greater yield of PO at 1.29%. Furthermore, the use of SrCO3 for CaCO3 resulted in a further improvement in the PO yield to 2.17%. An experiment using CO2 and NH3 pulse together with SEM and TEM examinations for Ag‒Na/CaCO3 revealed that the greatest activity was the result of the greater particle size of metallic Ag rather than the acid‒base properties of the catalysts

    Phosphorus Species Recovery Dependence on Acid Type during Dissolution-Precipitation Treatment of the Incineration Ash of Chicken Manure

    Get PDF
    In order to utilize chicken manure as a source of phosphorus, we used dissolution-precipitation treatment to recover phosphorus from the incineration ash of chicken manure (IACM), which was used as fuel to power a boiler. In order to recover useful phosphorus-containing solids from IACM, it was dissolved into aqueous solutions of either nitric acid, hydrochloric acid, or sulfuric acid to elute phosphorus together with various component elements, followed by the use of aqueous NH3 to form a precipitate containing phosphorus. In using nitric acid and hydrochloric acid, calcium phosphate species such as calcium hydroxyapatite (Ca10(PO4)6(OH)2) and monetite (CaHPO4) were obtained following the precipitation treatment. By contrast, the use of sulfuric acid resulted in the precipitation of magnesium ammonium phosphate (MAP) species such as struvite (MgNH4PO4∙6H2O) and dittmarite (MgNH4PO4∙H2O). Both the calcium phosphate and MAP species can be used as a slow-acting fertilizer containing phosphorus, while the MAP species could be simultaneously used as a slow-acting fertilizer containing nitrogen. It is noteworthy that the calcium phosphate species obtained in the present study was equivalent to phosphate rock, which is widely used as a raw material in phosphorous-based industries, and the natural sources of this material could be depleted in the near future. Though IACM has not been used effectively until now, this new resource shows promise as s viable alternative to the dwindling supply of the natural sources of phosphorus

    Recovery of Phosphate Rock Equivalents from Incineration Ash of Chicken Manure by Elution-Precipitation Treatment

    Get PDF
    In order to obtain calcium phosphates - a phosphate rock equivalent - from the incineration ash of chicken manure, which is obtained from power generation systems that use the manure for fuel, incineration ash was treated with an aqueous solution of nitric acid to elute phosphorus. By using 0.3 M of HNO3, most of the phosphorus could be eluted from 1.0 g of ash within 0.1 h. Compared with the composted chicken manure that was previously examined in our laboratory, the concentration of HNO3 was increased for this session of elution. Using the incineration ash of chicken manure made it possible to remove inorganic species at a lower boiling or sublimation temperature, and organic species by calcination in the power generation system. Compared with composted chicken manure, the concentrations of phosphorus contained in the incineration ash and the nitric acid extract were higher in the incineration ash. XRD analysis showed that the obtained nitric acid extract could be treated with aqueous NH3 to form a precipitation of poorly-crystallized calcium hydroxyapatite (Ca10(PO4)6(OH)2), which is one of main components in phosphate rock. In order to confirm the formation and purity of calcium phosphate species, the precipitation calcination was conducted at 1,078 K for 5 h. XRD revealed that the calcined solid was tricalcium phosphate, and no contamination was evident. These results reveal that a phosphate rock equivalent could be easily obtained from the incineration ash of chicken manure, which means that approximately 14% of the phosphate rock that is currently being imported into Japan could be replaced by this product

    Enhancement of Catalytic Activity Associated with Carbon Deposits Formed on NiO/γ-Al2O3 Catalysts during Direct Dehydrogenation of Isobutane

    Get PDF
    The dehydrogenation of isobutane in the presence of CO2 over NiO supported on γ-Al2O3 was examined. For comparison, Cr2O3 supported on γ-Al2O3 was also used. It is generally accepted that a catalyst used for the dehydrogenation of various alkanes will suffer catalyst deactivation due to the formation of carbon deposits. In the present study, the yield of isobutene was significantly decreased with time-on-stream due to carbon deposition when using Cr2O3(x)/γ-Al2O3, in which x indicates the loading of a corresponding oxide by weight %. However, carbon deposits also were evident on NiO(x)/γ-Al2O3, but the yield of isobutene was enhanced with time-on-stream depending on the loading (x). This indicates that the contribution of the carbon deposition in the dehydrogenation on NiO(x)/γ-Al2O3 definitely differed from that on an ordinary catalyst system such as Cr2O3(x)/γ-Al2O3. In order to confirm the advantageous effect that carbon deposition exerted on the yield of isobutene, NiO(x)/γ-Al2O3 was first treated with isobutane and then the catalytic activity was examined. As expected, it became clear that the carbon deposits formed during the pretreatment contributed to the enhancement of the yield of isobutene. The presence of a Ni-carbide species together with the metallic Ni that was converted from NiO during dehydrogenation definitely enhanced of the yield of isobutene. Although carbon deposition is generally recognized as the main cause of catalyst deactivation, the results of the present study reveal that carbon deposition is not necessarily the cause of this phenomenon
    corecore