31 research outputs found

    Identification and Modulation of the Key Amino Acid Residue Responsible for the pH Sensitivity of Neoculin, a Taste-Modifying Protein

    Get PDF
    Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor–taste substance in particular

    Structure of the plasmid-mediated class C beta-lactamase ACT-1.

    Full text link
    The crystallographic structure of ACT-1, which is the first plasmid-mediated AmpC-type beta-lactamase to have been completely analyzed in terms of nucleotide sequence and which has a high degree of sequence similarity to the chromosomal AmpC enzymes of Enterobacter cloacae and the plasmid-encoded MIR-1, has been solved at 2.4 A resolution. The overall structure of ACT-1 is similar to those of other class C beta-lactamases, such as the AmpC enzymes from E. cloacae P99 and Escherichia coli

    Structure of the plasmid-mediated class C β-lactamase ACT-1

    No full text

    RNA-hydrolyzing activity of metallo-β-lactamase IMP-1.

    No full text
    Metallo-β-lactamases (MBLs) hydrolyze a wide range of β-lactam antibiotics. While all MBLs share a common αβ/βα-fold, there are many other proteins with the same folding pattern that exhibit different enzymatic activities. These enzymes, together with MBLs, form the MBL superfamily. Thermotoga maritima tRNase Z, a tRNA 3' processing endoribonuclease of MBL-superfamily, and IMP-1, a clinically isolated MBL, showed a striking similarity in tertiary structure, despite low sequence homology. IMP-1 hydrolyzed both total cellular RNA and synthetic small unstructured RNAs. IMP-1 also hydrolyzed pre-tRNA, but its cleavage site was different from those of T. maritima tRNase Z and human tRNase Z long form, indicating a key difference in substrate recognition. Single-turnover kinetic assays suggested that substrate-binding affinity of T. maritima tRNase Z is much higher than that of IMP-1

    Purification and Characterization of an α-Amylase of Pichia burtonii

    No full text

    Kinetic Properties of Four Plasmid-Mediated AmpC β-Lactamases

    No full text
    The heterologous production in Escherichia coli, the purification, and the kinetic characterization of four plasmid-encoded class C β-lactamases (ACT-1, MIR-1, CMY-2, and CMY-1) were performed. Except for their instability, these enzymes are very similar to the known chromosomally encoded AmpC β-lactamases. Their kinetic parameters did not show major differences from those obtained for the corresponding chromosomal enzymes. However, the K(m) values of CMY-2 for cefuroxime, cefotaxime, and oxacillin were significantly decreased compared to those of the chromosomal AmpC enzymes. Finally, the susceptibility patterns of different E. coli hosts producing a plasmid- or a chromosome-encoded class C enzyme toward β-lactam antibiotics are mainly due to the overproduction of the β-lactamase in the periplasmic space of the bacteria rather than to a specific catalytic profile of the plasmid-encoded β-lactamases
    corecore