273 research outputs found

    Supersymmetry Breaking in a Large N Gauge Theory with Gravity Dual

    Full text link
    We study phase structure of mass-deformed ABJM theory which is a three dimensional N=6\mathcal{N}=6 superconformal theory deformed by mass parameters and has the gauge group U(N)×U(N)\text{U}(N)\times \text{U}(N) with Chern-Simons levels (k,k)(k,-k) which may have a gravity dual. We discuss that the mass deformed ABJM theory on S3S^3 breaks supersymmetry in a large-NN limit if the mass is larger than a critical value. To see some evidence for this conjecture, we compute the partition function exactly, and numerically by using the Monte Carlo Simulation for small NN. We discover that the partition function has zeroes as a function of the mass deformation parameters if NkN\ge k, which supports the large-NN supersymmetry breaking. We also find a solution to the large-NN saddle point equations, where the free energy is consistent with the finite NN result.Comment: 42 pages, 11 figure

    Mass deformed ABJM theory on three sphere in large N limit

    Get PDF
    In this paper the free energy of the mass deformed ABJM theory on S[3] in the large N limit is studied. We find a new solution of the large N saddle point equation which exists for an arbitrary value of the mass parameter, and compute the free energies for these solutions. We also show that the solution corresponding to an asymptotically AdS4 geometry is singular at a certain value of the mass parameter and does not exist over this critical value. It is not clear that what is the gravity dual of the mass deformed ABJM theory on S[3] for the mass parameter larger than the critical value

    Device-free Indoor WLAN Localization with Distributed Antenna Placement Optimization and Spatially Localized Regression

    Full text link
    Wireless sensing is a promising technology for future wireless communication networks to realize various application services. Wireless local area network (WLAN)-based localization approaches using channel state information (CSI) have been investigated intensively. Further improvements in detection performance will depend on selecting appropriate feature information and determining the placements of distributed antenna elements. This paper presents a proposal of an enhanced device-free WLAN-based localization scheme with beam-tracing based antenna placement optimization and spatially localized regression, where beam-forming weights (BFWs) are used as feature information for training machine-learning (ML)-based models localized to partitioned areas. By this scheme, the antenna placement at the access point (AP) is determined by solving a combinational optimization problem with beam-tracing between AP and station (STA) without knowing the CSI. Additionally, we propose the use of localized regression to improve localization accuracy with low complexity, where classification and regression based ML models are used for coarse and precise estimations of the target position. We evaluate the proposed scheme effects on localization performance in an indoor environment. Experiment results demonstrate that the proposed antenna placement and localized regression scheme improve the localization accuracy while reducing the required complexity for both off-line training and on-line localization relative to other reference schemes.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Interaction between anti-Alzheimer and antipsychotic drugs in modulating extrapyramidal motor disorders in mice

    Get PDF
    AbstractAntipsychotics are often used in conjunction with anti-Alzheimer drugs to treat the behavioral and psychological symptoms of dementia (BPSD). Here, we examined the effects of cholinesterase inhibitors (ChEIs), donepezil and galantamine, on antipsychotic-induced extrapyramidal side effects (EPS) in mice. The effects of serotonergic agents on the EPS drug interaction were also evaluated. Donepezil (0.3–3 mg/kg) did not induce EPS signs by itself; however, it significantly potentiated bradykinesia induction with a low dose of haloperidol (0.5 mg/kg) in dose-dependent and synergistic manners. Galantamine (0.3–3 mg/kg) elicited mild bradykinesia at a high dose and dose-dependently augmented haloperidol-induced bradykinesia. The EPS potentiation by galantamine was blocked by trihexyphenidyl (a muscarinic antagonist), but not by mecamylamine (a nicotinic antagonist). In addition, the bradykinesia potentiation by galantamine was significantly reduced by (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (a 5-HT1A agonist), ritanserin (a 5-HT2 antagonist), and SB-258585 (a 5-HT6 antagonist). The present results give us a caution for the antipsychotics and ChEIs interaction in inducing EPS in the treatment of BPSD. In addition, second generation antipsychotics, which can stimulate 5-HT1A receptors or antagonize 5-HT2 and 5-HT6 receptors, seem to be favorable as an adjunctive therapy for BPSD

    Silent-speech enhancement using body-conducted vocal-tract resonance signals

    Get PDF
    The physical characteristics of weak body-conducted vocal-tract resonance signals called non-audible murmur (NAM) and the acoustic characteristics of three sensors developed for detecting these signals have been investigated. NAM signals attenuate 50 dB at 1 kHz; this attenuation consists of 30-dB full-range attenuation due to air-to-body transmission loss and 10 dB/octave spectral decay due to a sound propagation loss within the body. These characteristics agree with the spectral characteristics of measured NAM signals. The sensors have a sensitivity of between 41 and 58 dB [V/Pa] at I kHz, and the mean signal-to-noise ratio of the detected signals was 15 dB. On the basis of these investigations, three types of silent-speech enhancement systems were developed: (1) simple, direct amplification of weak vocal-tract resonance signals using a wired urethane-elastomer NAM microphone, (2) simple, direct amplification using a wireless urethane-elastomer-duplex NAM microphone, and (3) transformation of the weak vocal-tract resonance signals sensed by a soft-silicone NAM microphone into whispered speech using statistical conversion. Field testing of the systems showed that they enable voice impaired people to communicate verbally using body-conducted vocal-tract resonance signals. Listening tests demonstrated that weak body-conducted vocal-tract resonance sounds can be transformed into intelligible whispered speech sounds. Using these systems, people with voice impairments can re-acquire speech communication with less effort. (C) 2009 Elsevier B.V. All rights reserved.ArticleSPEECH COMMUNICATION. 52(4):301-313 (2010)journal articl
    corecore