8 research outputs found

    急性肺障害ウサギモデルにおける神経調節補助換気が人工呼吸器誘発横隔膜障害に与える影響の検討

    Get PDF
    広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora

    Pediatric cardiorespiratory failure successfully managed with venoarterial-venous extracorporeal membrane oxygenation: a case report

    Get PDF
    Background: Venoarterial-venous extracorporeal membrane oxygenation (VAV ECMO) configuration is a combined procedure of extracorporeal membrane oxygenation (ECMO). The proportion of cardiac and respiratory support can be controlled by adjusting arterial and venous return. Therefore, VAV ECMO can be applicable as a bridging therapy in the transition from venoarterial (VA) to venovenous (VV) ECMO. Case presentation: We present an 11-year-old girl with chemotherapy-induced myocarditis requiring extracorporeal cardiorespiratory support. She showed progressive hypotension, tachycardia, hyperlactemia, and tachypnea under support of catecholamines. Echocardiography showed severe left ventricular hypokinesis with an ejection fraction of 30 %. She was placed on VA ECMO with a drainage catheter from the right femoral vein (19.5 Fr) and a return catheter to the right femoral artery (16.5 Fr). Extracorporeal circulation was initiated at a blood flow of 2.0 L/min (59 mL/kg/min). On day 31, although cardiac function had improved, persistent pulmonary failure made weaning from VA ECMO difficult. We planned transition from VA ECMO to VAV ECMO to ensure gradual tapering of extracorporeal cardiac support while evaluating cardiopulmonary function. An additional return cannula (13.5 Fr) was inserted from the right internal jugular vein, which was connected to the circuit branch from the original returning cannula. We then gradually shifted the blood from the femoral artery to the right internal jugular vein over 24 h. She was successfully switched from VA to VV ECMO via VAV ECMO. Conclusions: VAV ECMO might be an option in ensuring oxygenation to the coronary circulation and allowing time to adequately evaluate cardiac function during transition from VA to VV ECMO. Further investigations using larger cohorts are necessary to validate the efficacy of VAV ECMO as a bridging therapy in the transition from VA to VV ECMO.This work was supported by a JSPS KAKENHI Grant (Number JP 16K09541)

    Fundamental concepts and the latest evidence for esophageal pressure monitoring

    No full text
    Abstract Transpulmonary pressure is an essential physiologic concept as it reflects the true pressure across the alveoli, and is a more precise marker for lung stress. To calculate transpulmonary pressure, one needs an estimate of both alveolar pressure and pleural pressure. Airway pressure during conditions of no flow is the most widely accepted surrogate for alveolar pressure, while esophageal pressure remains the most widely measured surrogate marker for pleural pressure. This review will cover important concepts and clinical applications for esophageal manometry, with a particular focus on how to use the information from esophageal manometry to adjust or titrate ventilator support. The most widely used method for measuring esophageal pressure uses an esophageal balloon catheter, although these measurements can be affected by the volume of air in the balloon. Therefore, when using balloon catheters, it is important to calibrate the balloon to ensure the most appropriate volume of air, and we discuss several methods which have been proposed for balloon calibration. In addition, esophageal balloon catheters only estimate the pleural pressure over a certain area within the thoracic cavity, which has resulted in a debate regarding how to interpret these measurements. We discuss both direct and elastance-based methods to estimate transpulmonary pressure, and how they may be applied for clinical practice. Finally, we discuss a number of applications for esophageal manometry and review many of the clinical studies published to date which have used esophageal pressure. These include the use of esophageal pressure to assess lung and chest wall compliance individually which can provide individualized information for patients with acute respiratory failure in terms of setting PEEP, or limiting inspiratory pressure. In addition, esophageal pressure has been used to estimate effort of breathing which has application for ventilator weaning, detection of upper airway obstruction after extubation, and detection of patient and mechanical ventilator asynchrony

    Differential Effectiveness of Hypothermic Targeted Temperature Management According to the Severity of Post-Cardiac Arrest Syndrome

    No full text
    International guidelines recommend targeted temperature management (TTM) to improve the neurological outcomes in adult patients with post-cardiac arrest syndrome (PCAS). However, it still remains unclear if the lower temperature setting (hypothermic TTM) or higher temperature setting (normothermic TTM) is superior for TTM. According to the most recent large randomized controlled trial (RCT), hypothermic TTM was not found to be associated with superior neurological outcomes than normothermic TTM in PCAS patients. Even though this represents high-quality evidence obtained from a well-designed large RCT, we believe that we still need to continue investigating the potential benefits of hypothermic TTM. In fact, several studies have indicated that the beneficial effect of hypothermic TTM differs according to the severity of PCAS, suggesting that there may be a subgroup of PCAS patients that is especially likely to benefit from hypothermic TTM. Herein, we summarize the results of major RCTs conducted to evaluate the beneficial effects of hypothermic TTM, review the recent literature suggesting the possibility that the therapeutic effect of hypothermic TTM differs according to the severity of PCAS, and discuss the potential of individualized TTM

    Neurally adjusted ventilatory assist mitigates ventilator-induced diaphragm injury in rabbits

    No full text
    BACKGROUND: Ventilator-induced diaphragmatic dysfunction is a serious complication associated with higher ICU mortality, prolonged mechanical ventilation, and unsuccessful withdrawal from mechanical ventilation. Although neurally adjusted ventilatory assist (NAVA) could be associated with lower patient-ventilator asynchrony compared with conventional ventilation, its effects on diaphragmatic dysfunction have not yet been well elucidated. METHODS: Twenty Japanese white rabbits were randomly divided into four groups, (1) no ventilation, (2) controlled mechanical ventilation (CMV) with continuous neuromuscular blockade, (3) NAVA, and (4) pressure support ventilation (PSV). Ventilated rabbits had lung injury induced, and mechanical ventilation was continued for 12 h. Respiratory waveforms were continuously recorded, and the asynchronous events measured. Subsequently, the animals were euthanized, and diaphragm and lung tissue were removed, and stained with Hematoxylin-Eosin to evaluate the extent of lung injury. The myofiber cross-sectional area of the diaphragm was evaluated under the adenosine triphosphatase staining, sarcomere disruptions by electron microscopy, apoptotic cell numbers by the TUNEL method, and quantitative analysis of Caspase-3 mRNA expression by real-time polymerase chain reaction. RESULTS: Physiological index, respiratory parameters, and histologic lung injury were not significantly different among the CMV, NAVA, and PSV. NAVA had lower asynchronous events than PSV (median [interquartile range], NAVA, 1.1 [0–2.2], PSV, 6.8 [3.8–10.0], p = 0.023). No differences were seen in the cross-sectional areas of myofibers between NAVA and PSV, but those of Type 1, 2A, and 2B fibers were lower in CMV compared with NAVA. The area fraction of sarcomere disruptions was lower in NAVA than PSV (NAVA vs PSV; 1.6 [1.5–2.8] vs 3.6 [2.7–4.3], p < 0.001). The proportion of apoptotic cells was lower in NAVA group than in PSV (NAVA vs PSV; 3.5 [2.5–6.4] vs 12.1 [8.9–18.1], p < 0.001). There was a tendency in the decreased expression levels of Caspase-3 mRNA in NAVA groups. Asynchrony Index was a mediator in the relationship between NAVA and sarcomere disruptions. CONCLUSIONS: Preservation of spontaneous breathing using either PSV or NAVA can preserve the cross sectional area of the diaphragm to prevent atrophy. However, NAVA may be superior to PSV in preventing sarcomere injury and apoptosis of myofibrotic cells of the diaphragm, and this effect may be mediated by patient-ventilator asynchrony
    corecore