56 research outputs found
Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study
The effect of stress-triaxiality on growth of a void in a three dimensional
single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular
dynamics (MD) simulations using an embedded-atom (EAM) potential for copper
have been performed at room temperature and using strain controlling with high
strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these
magnitudes can be studied experimentally, e.g. using shock waves induced by
laser ablation. Void growth has been simulated in three different conditions,
namely uniaxial, biaxial, and triaxial expansion. The response of the system in
the three cases have been compared in terms of the void growth rate, the
detailed void shape evolution, and the stress-strain behavior including the
development of plastic strain. Also macroscopic observables as plastic work and
porosity have been computed from the atomistic level. The stress thresholds for
void growth are found to be comparable with spall strength values determined by
dynamic fracture experiments. The conventional macroscopic assumption that the
mean plastic strain results from the growth of the void is validated. The
evolution of the system in the uniaxial case is found to exhibit four different
regimes: elastic expansion; plastic yielding, when the mean stress is nearly
constant, but the stress-triaxiality increases rapidly together with
exponential growth of the void; saturation of the stress-triaxiality; and
finally the failure.Comment: 35 figures, which are small (and blurry) due to the space
limitations; submitted (with original figures) to Physical Review B. Final
versio
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment
The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2)
The MAJORANA experiment: An ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the MAJORANA experiment, known as the DEMONSTRATOR, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak
Characteristics of signals originating near the lithium-diffused N+ contact of high purity germanium p-type point contact detectors
A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein
The MAJORANA DEMONSTRATOR for 0νββ: Current Status and Future Plans
The MAJORANA DEMONSTRATOR will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3 counts in the 0νββ-decay ROI per tonne of target isotope per year (cnts/(ROI-t-y)). The current status of the Demonstrator is discussed, as are plans for its completion
A Dark Matter Search with MALBEK
The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Metastatic Squamous Cell Carcinoma in a Northern Brown Bandicoot (Isoodon macrourus)
Aside from a handful of notable exceptions, neoplasia is not reported as a major cause of mortality in wild animal populations and often goes undetected. For northern brown bandicoots specifically, there are few reported tumors in the literature and on file in the Australian Registry of Wildlife Health. This report describes a case of squamous cell carcinoma in a northern brown bandicoot (Isoodon macrourus), with metastases to the draining lymph nodes and lung. This neoplasm consisted predominantly of well-differentiated squamous cells and multifocal keratin pearls, with areas possibly consistent with epithelial to mesenchymal transition, as identified by positive immunohistochemical staining by both pancytokeratin (AE1/AE3) and vimentin. Additional investigations were negative for bandicoot papillomatosis carcinomatosis viruses
- …