96 research outputs found

    AON: Towards Arbitrarily-Oriented Text Recognition

    Full text link
    Recognizing text from natural images is a hot research topic in computer vision due to its various applications. Despite the enduring research of several decades on optical character recognition (OCR), recognizing texts from natural images is still a challenging task. This is because scene texts are often in irregular (e.g. curved, arbitrarily-oriented or seriously distorted) arrangements, which have not yet been well addressed in the literature. Existing methods on text recognition mainly work with regular (horizontal and frontal) texts and cannot be trivially generalized to handle irregular texts. In this paper, we develop the arbitrary orientation network (AON) to directly capture the deep features of irregular texts, which are combined into an attention-based decoder to generate character sequence. The whole network can be trained end-to-end by using only images and word-level annotations. Extensive experiments on various benchmarks, including the CUTE80, SVT-Perspective, IIIT5k, SVT and ICDAR datasets, show that the proposed AON-based method achieves the-state-of-the-art performance in irregular datasets, and is comparable to major existing methods in regular datasets.Comment: Accepted by CVPR201

    LCB-net: Long-Context Biasing for Audio-Visual Speech Recognition

    Full text link
    The growing prevalence of online conferences and courses presents a new challenge in improving automatic speech recognition (ASR) with enriched textual information from video slides. In contrast to rare phrase lists, the slides within videos are synchronized in real-time with the speech, enabling the extraction of long contextual bias. Therefore, we propose a novel long-context biasing network (LCB-net) for audio-visual speech recognition (AVSR) to leverage the long-context information available in videos effectively. Specifically, we adopt a bi-encoder architecture to simultaneously model audio and long-context biasing. Besides, we also propose a biasing prediction module that utilizes binary cross entropy (BCE) loss to explicitly determine biased phrases in the long-context biasing. Furthermore, we introduce a dynamic contextual phrases simulation to enhance the generalization and robustness of our LCB-net. Experiments on the SlideSpeech, a large-scale audio-visual corpus enriched with slides, reveal that our proposed LCB-net outperforms general ASR model by 9.4%/9.1%/10.9% relative WER/U-WER/B-WER reduction on test set, which enjoys high unbiased and biased performance. Moreover, we also evaluate our model on LibriSpeech corpus, leading to 23.8%/19.2%/35.4% relative WER/U-WER/B-WER reduction over the ASR model.Comment: Accepted by ICASPP 202

    A Comparative Study on multichannel Speaker-attributed automatic speech recognition in Multi-party Meetings

    Full text link
    Speaker-attributed automatic speech recognition (SA-ASR) in multiparty meeting scenarios is one of the most valuable and challenging ASR task. It was shown that single-channel frame-level diarization with serialized output training (SC-FD-SOT), single-channel word-level diarization with SOT (SC-WD-SOT) and joint training of single-channel target-speaker separation and ASR (SC-TS-ASR) can be exploited to partially solve this problem. SC-FD-SOT obtains the speaker-attributed transcriptions by aligning the speaker diarization results with the ASR hypotheses, SC-WD-SOT uses word-level diarization to get rid of the alignment dependence on timestamps, and SC-TS-ASR jointly trains target-speaker separation and ASR modules, which achieves the best performance. In this paper, we propose three corresponding multichannel (MC) SA-ASR approaches, namely MC-FD-SOT, MC-WD-SOT and MC-TS-ASR. For different tasks/models, different multichannel data fusion strategies are considered, including channel-level cross-channel attention for MC-FD-SOT, frame-level cross-channel attention for MC-WD-SOT and neural beamforming for MC-TS-ASR. Experimental results on the AliMeeting corpus reveal that our proposed multichannel SA-ASR models can consistently outperform the corresponding single-channel counterparts in terms of the speaker-dependent character error rate (SD-CER)

    BA-SOT: Boundary-Aware Serialized Output Training for Multi-Talker ASR

    Full text link
    The recently proposed serialized output training (SOT) simplifies multi-talker automatic speech recognition (ASR) by generating speaker transcriptions separated by a special token. However, frequent speaker changes can make speaker change prediction difficult. To address this, we propose boundary-aware serialized output training (BA-SOT), which explicitly incorporates boundary knowledge into the decoder via a speaker change detection task and boundary constraint loss. We also introduce a two-stage connectionist temporal classification (CTC) strategy that incorporates token-level SOT CTC to restore temporal context information. Besides typical character error rate (CER), we introduce utterance-dependent character error rate (UD-CER) to further measure the precision of speaker change prediction. Compared to original SOT, BA-SOT reduces CER/UD-CER by 5.1%/14.0%, and leveraging a pre-trained ASR model for BA-SOT model initialization further reduces CER/UD-CER by 8.4%/19.9%.Comment: Accepted by INTERSPEECH 202
    • …
    corecore