4 research outputs found

    Curvature-induced phase transition in three-dimensional Thirring model

    Get PDF
    The effective potential of composite fermion fields in three-dimensional Thirring model in curved spacetime is calculated in linear curvature approximation. The phase transition accompanied by the creation of non-zero chiral invariant bifermionic vector-like condensate is shown to exist. The type of this phase transition is discussed.Comment: 12 pages, 3 figures, LaTeX, submitted to Modern Physics Letters

    Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    Full text link
    The phase structure of d=3d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.Comment: 7 pages, LaTe

    Dynamical symmetry breaking in the Nambu-Jona-Lasino model with external gravitational and constant electric fields

    Full text link
    An investigation of the Nambu-Jona-Lasino model with external constant electric and weak gravitational fields is carried out in three- and four- dimensional spacetimes. The effective potential of the composite bifermionic fields is calculated keeping terms linear in the curvature, while the electric field effect is treated exactly by means of the proper- time formalism. A rich dynamical symmetry breaking pattern, accompanied by phase transitions which are ruled, independently, by both the curvature and the electric field strength is found. Numerical simulations of the transitions are presented.Comment: 20 pages, LaTeX, 6 .ps-figures, Final version published in "Classical and Quantum Gravity
    corecore