39 research outputs found
Glycosylated Collagen Interaction with Cells Through DDRs and Integrin
https://openworks.mdanderson.org/sumexp22/1009/thumbnail.jp
COVID-19 prevention and control measures and experiences during the 14th National Games of China: a qualitative interview study
BackgroundThe 14th National Games was the first sporting mass gathering to be held in China in the context of the COVID-19 pandemic. It may increase the risk of severe acute respiratory syndrome coronavirus 2 transmission. In order to reduce the spread of the virus during the 14th National Games, the Chinese government took a series of public health measures, and ultimately no confirmed cases were found in the 14th National Games venues.ObjectiveThis study aimed to discuss preventive and control measures used to respond to the COVID-19 pandemic during the 14th National Games.MethodsFive experts were selected for this study using a snowball sampling method, and semistructured and in-depth interviews were conducted. Based on grounded theory, the transcriptions were analysed and coded using Nvivo 12 software.ResultsA theoretical model of the COVID-19 prevention and control measures at the 14th National Games of China was constructed. The model contains seven main components: the health risks of mass gatherings, crowd management, emergency medical care, allocation of emergency medical resources, pandemic emergency drills, the pandemic prevention and control management platform (Quanyuntong app), and emergency response plans.ConclusionThe study showed that the deployment of emergency medical resources was the most important for mass gatherings. This study not only expanded the applications of grounded theory but also serves as a reference for future scholars when conducting more in-depth empirical studies on public health countermeasures for mass gatherings and can inform organizers when holding mass gatherings
Damage-Associated Molecular Patterns and Their Signaling Pathways in Primary Blast Lung Injury: New Research Progress and Future Directions
Primary blast lung injury (PBLI) is a common cause of casualties in wars, terrorist attacks, and explosions. It can exist in the absence of any other outward signs of trauma, and further develop into acute lung injury (ALI) or a more severe acute respiratory distress syndrome (ARDS). The pathogenesis of PBLI at the cellular and molecular level has not been clear. Damage-associated molecular pattern (DAMP) is a general term for endogenous danger signals released by the body after injury, including intracellular protein molecules (HMGB1, histones, s100s, heat shock proteins, eCIRP, etc.), secretory protein factors (IL-1β, IL-6, IL-10, TNF-α, VEGF, complements, etc.), purines and pyrimidines and their derived degradation products (nucleic acids, ATP, ADP, UDPG, uric acid, etc.), and extracellular matrix components (hyaluronic acid, fibronectin, heparin sulfate, biglycan, etc.). DAMPs can be detected by multiple receptors including pattern recognition receptors (PRRs). The study of DAMPs and their related signaling pathways, such as the mtDNA-triggered cGAS-YAP pathway, contributes to revealing the molecular mechanism of PBLI, and provides new therapeutic targets for controlling inflammatory diseases and alleviating their symptoms. In this review, we focus on the recent progress of research on DAMPs and their signaling pathways, as well as the potential therapeutic targets and future research directions in PBLI
A Medical Image Segmentation Method Based on Improved UNet 3+ Network
In recent years, segmentation details and computing efficiency have become more important in medical image segmentation for clinical applications. In deep learning, UNet based on a convolutional neural network is one of the most commonly used models. UNet 3+ was designed as a modified UNet by adopting the architecture of full-scale skip connections. However, full-scale feature fusion can result in excessively redundant computations. This study aimed to reduce the network parameters of UNet 3+ while further improving the feature extraction capability. First, to eliminate redundancy and improve computational efficiency, we prune the full-scale skip connections of UNet 3+. In addition, we use the attention module called Convolutional Block Attention Module (CBAM) to capture more essential features and thus improve the feature expression capabilities. The performance of the proposed model was validated by three different types of datasets: skin cancer segmentation, breast cancer segmentation, and lung segmentation. The parameters are reduced by about 36% and 18% compared to UNet and UNet 3+, respectively. The results show that the proposed method not only outperformed the comparison models in a variety of evaluation metrics but also achieved more accurate segmentation results. The proposed models have lower network parameters that enhance feature extraction and improve segmentation performance efficiently. Furthermore, the models have great potential for application in medical imaging computer-aided diagnosis
The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier
The gut is the body’s largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting
Characteristics and Developments in Mesenchymal Stem Cell Therapy for COVID-19: An Update
The outbreak of coronavirus disease 2019 (COVID-19) has so far resulted in over a hundred million people being infected. COVID-19 poses a threat to human health around the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been confirmed as the pathogenic virus of COVID-19. SARS-CoV-2 belongs to the β-coronavirus family of viruses and is mainly transmitted through the respiratory tract. It has been proven that SARS-CoV-2 mainly targets angiotensin-converting enzyme II (ACE2) receptors on the surface of various cells in humans. The main clinical symptoms of COVID-19 include fever, cough, and severe acute respiratory distress syndrome (ARDS). Current evidence suggests that the damage caused by the virus may be closely related to the induction of cytokine storms in COVID-19. No specific drugs or measures have yet to be shown to cure COVID-19 completely. Cell-based approaches, primarily mesenchymal stem cells (MSCs), have been identified to have anti-inflammatory and immune functions in COVID-19. Clinical studies about using MSCs and its derivatives—exosomes for COVID-19 treatment—are under investigation. Here, we review the current progress of the biological characteristics, clinical manifestations, and cell-based treatment development for COVID-19. Providing up-to-date information on COVID-19 and potential MSC therapies will help highlight routes to prevent and treat the disease
Mesenchymal Stem Cell-Derived Extracellular Vesicles as Idiopathic Pulmonary Fibrosis Microenvironment Targeted Delivery
Idiopathic pulmonary fibrosis (IPF) affects an increasing number of people globally, yet treatment options remain limited. At present, conventional treatments depending on drug therapy do not show an ideal effect in reversing the lung damage or extending the lives of IPF patients. In recent years, more and more attention has focused on extracellular vesicles (EVs) which show extraordinary therapeutic effects in inflammation, fibrosis disease, and tissue damage repair in many kinds of disease therapy. More importantly, EVs can be modified or used as a drug or cytokine delivery tool, targeting injury sites to enhance treatment efficiency. In light of this, the treatment strategy of mesenchymal stem cell-extracellular vesicles (MSC-EVs) targeting the pulmonary microenvironment for IPF provides a new idea for the treatment of IPF. In this review, we summarized the inflammation, immune dysregulation, and extracellular matrix microenvironment (ECM) disorders in the IPF microenvironment in order to reveal the treatment strategy of MSC-EVs targeting the pulmonary microenvironment for IPF
What else should hemostatic materials do beyond hemostasis: A review
Massive blood loss due to injury is the leading cause of prehospital deaths in disasters and emergencies. Hemostatic materials are used to realize rapid hemostasis and protect patients from death. Researchers have designed and developed a variety of hemostatic materials. However, in addition to their hemostatic effect, hemostatic materials must be endowed with additional functions to meet the practical application requirements in different scenarios. Here, strategies for modifications of hemostatic materials for use in different application scenarios are listed: effective positioning at the site of deep and narrow wounds to stop bleeding, resistance to high blood pressure and wound movement to maintain wound formation, rapid and easy removal from the wound without affecting further treatment after hemostasis is completed, and continued function when retained in the wound as a dressing (such as antibacterial, antiadhesion, tissue repair, etc.). The problems encountered in the practical use of hemostatic materials and the strategies and progress of researchers will be further discussed in this review. We hope to provide valuable references for the design of more comprehensive and practical hemostatic materials
Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats.
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice