142 research outputs found

    Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress

    Get PDF
    It has been known for about sixty years that proton and heavy ion therapy is a very powerful radiation procedure for treating tumours. It has an innate ability to irradiate tumours with greater doses and spatial selectivity compared with electron and photon therapy and hence is a tissue sparing procedure. For more than twenty years powerful lasers have generated high energy beams of protons and heavy ions and hence it has been frequently speculated that lasers could be used as an alternative to RF accelerators to produce the particle beams necessary for cancer therapy. The present paper reviews the progress made towards laser driven hadron cancer therapy and what has still to be accomplished to realise its inherent enormous potential.Comment: 40 pages, 24 figure

    SOFC Anode Fabricated by Magnetically Aligning of Ni Particles

    Get PDF
    Ni particles are aligned by magnetic field during the drying process after screen-printing Ni/8YSZ (yttria-stabilized zirconia) paste. By applying a magnetic field, Ni particles are magnetically polarized, attracted to each other, and align along the magnetic field. It is proposed, that not only tortuosity of Ni but also that of YSZ and of pores is decreased. Symmetrical half cells are fabricated with 15-µm-thick anodes and 200-µm-thick YSZ electrolytes. A current collector made of porous Ni with a thickness of approximately 5 µm was printed on top of each anode. The microstructural changes in the anodes are analyzed by scanning electron microscopy. Impedance measurements are performed at 700°C in H 2 /H 2 O atmospheres containing 10% and 60% H 2 O. The initial polarization resistance was decreased after applying a magnetic field of 100 mT by up to 25%. However, with higher magnetic field, the polarization resistance increases, which might be explained by a pronounced increase of the surface roughness with 30 µm peak-to-valley, causing current constriction

    Saccharomyces cerevisiae-based system for studying clustered DNA damages

    Get PDF
    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures
    corecore