1,174 research outputs found
Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe
We study Thomson scattering from the antiferroquadrupole ordering phase in
TmTe. On the basis of the group theoretical treatment, we classify the
selection rules of the scattering intensity governed by the orientation of the
scattering vector G. Then, numerical verification is performed by invoking the
ground states which are deduced from a J=7/2 multiplet model. The obtained
intensity varies drastically depending on the magnitude and direction of G. We
also calculate the scattering intensities under the applied field for H//(001)
and (110). Their results behave differently when the orientation of G is
changed, which is ascribed to the difference of their primary order parameters;
O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make
critical comparisons between our results for TmTe and the experimental ones for
CeB_6. First, we assert that the intensities expected from TmTe at several
forbidden Bragg spots are sufficient enough to be experimentally detected.
Second, their intensities at (7/2,1/2,1/2) differ significantly and may be
attributed to the difference of the order parametersbetween the \Gamma_3-type
(O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy})
components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp
Spin nematic interaction in multiferroic compound BaCoGeO
We demonstrate the existence of the spin nematic interactions in an
easy-plane type antiferromagnet BaCoGeO by exploring the
magnetic anisotropy and spin dynamics. Combination of neutron scattering and
magnetic susceptibility measurements reveals that the origin of the in-plane
anisotropy is an antiferro-type interaction of the spin nematic operator. The
relation between the nematic operator and the electric polarization in the
ligand symmetry of this compound is presented. The introduction of the spin
nematic interaction is useful to understand the physics of spin and electric
dipole in multiferroic compounds.Comment: 5 pages, 4 figure
Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe
The physical properties of the antiferroquadrupolar state occurring in TmTe
below TQ=1.8 K have been studied using neutron diffraction in applied magnetic
fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is
observed and, from its magnitude and direction for different orientations of H,
an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5
K reveal that the magnetic structure is canted, in agreement with theoretical
predictions for in-plane antiferromagnetism. Complex domain repopulation
effects occur when the field is increased in the ordered phases, with
discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on
Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001),
September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical
Society of Japan (2002
Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12
In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2
configuration hybridize with conduction electrons having local a_u and t_u
point-group symmetries. It is shown that for an attractive triplet pairing
interaction, the orbital degrees of freedom of the t_u component are important.
In addition, the Th point-group symmetry characteristic of skutterudites plays
an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure
Determination of the Antiferroquadrupolar Order Parameters in UPd3
By combining accurate heat capacity and X-ray resonant scattering results we
have resolved the long standing question regarding the nature of the
quadrupolar ordered phases in UPd_3. The order parameter of the highest
temperature quadrupolar phase has been uniquely determined to be antiphase
Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal
dependence of the X-ray scattering intensity from the quadrupolar superlattice
reflections indicates that the lower temperature phases are described by a
superposition of order parameters. The heat capacity features associated with
each of the phase transitions characterize their order, which imposes
restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure
Multipole State of Heavy Lanthanide Filled Skutterudites
We discuss multipole properties of filled skutterudites containing heavy
lanthanide Ln from a microscopic viewpoint on the basis of a seven-orbital
Anderson model. For Ln=Gd, in contrast to naive expectation, quadrupole moments
remain in addition to main dipole ones. For Ln=Ho, we find an exotic state
governed by octupole moment. For Ln=Tb and Tm, no significant multipole moments
appear at low temperatures, while for Ln=Dy, Er, and Yb, dipole and
higher-order multipoles are dominant. We briefly discuss possible relevance of
these multipole states with actual materials.Comment: 5 pages, 3 figure
Self-Consistent Perturbation Theory for Thermodynamics of Magnetic Impurity Systems
Integral equations for thermodynamic quantities are derived in the framework
of the non-crossing approximation (NCA). Entropy and specific heat of 4f
contribution are calculated without numerical differentiations of thermodynamic
potential. The formulation is applied to systems such as PrFe4P12 with
singlet-triplet crystalline electric field (CEF) levels.Comment: 3 pages, 2 figures, proc. ASR-WYP-2005 (JAERI
Effects of Impurities with Singlet-Triplet Configuration on Multiband Superconductors
Roles of multipole degrees of freedom in multiband superconductors are
investigated in a case of impurities whose low-lying states consist of singlet
ground and triplet excited states, which is related to the experimental fact
that the transition temperature is increased by Pr substitution for
La in LaOsSb. The most important contribution to the
increase comes from the inelastic interband scattering of electrons coupled to
quadrupole or octupole moments of impurities. It is found that a magnetic field
modifies an effective pairing interaction and the scattering anisotropy appears
in the field-orientation dependence of the upper critical field
in the vicinity of , although a uniaxial anisotropic field is
required for experimental detection. This would be proof that the Pr internal
degrees of freedom are relevant to the stability of superconductivity in
(LaPr)OsSb.Comment: 10 pages, 5 figures, to appear in J. Phys. Soc. Jp
- …