1,173 research outputs found

    Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe

    Full text link
    We study Thomson scattering from the antiferroquadrupole ordering phase in TmTe. On the basis of the group theoretical treatment, we classify the selection rules of the scattering intensity governed by the orientation of the scattering vector G. Then, numerical verification is performed by invoking the ground states which are deduced from a J=7/2 multiplet model. The obtained intensity varies drastically depending on the magnitude and direction of G. We also calculate the scattering intensities under the applied field for H//(001) and (110). Their results behave differently when the orientation of G is changed, which is ascribed to the difference of their primary order parameters; O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make critical comparisons between our results for TmTe and the experimental ones for CeB_6. First, we assert that the intensities expected from TmTe at several forbidden Bragg spots are sufficient enough to be experimentally detected. Second, their intensities at (7/2,1/2,1/2) differ significantly and may be attributed to the difference of the order parametersbetween the \Gamma_3-type (O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy}) components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp

    Spin nematic interaction in multiferroic compound Ba2_{2}CoGe2_{2}O7_{7}

    Full text link
    We demonstrate the existence of the spin nematic interactions in an easy-plane type antiferromagnet Ba2_{2}CoGe2_{2}O7_{7} by exploring the magnetic anisotropy and spin dynamics. Combination of neutron scattering and magnetic susceptibility measurements reveals that the origin of the in-plane anisotropy is an antiferro-type interaction of the spin nematic operator. The relation between the nematic operator and the electric polarization in the ligand symmetry of this compound is presented. The introduction of the spin nematic interaction is useful to understand the physics of spin and electric dipole in multiferroic compounds.Comment: 5 pages, 4 figure

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12

    Full text link
    In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2 configuration hybridize with conduction electrons having local a_u and t_u point-group symmetries. It is shown that for an attractive triplet pairing interaction, the orbital degrees of freedom of the t_u component are important. In addition, the Th point-group symmetry characteristic of skutterudites plays an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure

    Determination of the Antiferroquadrupolar Order Parameters in UPd3

    Get PDF
    By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure

    Multipole State of Heavy Lanthanide Filled Skutterudites

    Full text link
    We discuss multipole properties of filled skutterudites containing heavy lanthanide Ln from a microscopic viewpoint on the basis of a seven-orbital Anderson model. For Ln=Gd, in contrast to naive expectation, quadrupole moments remain in addition to main dipole ones. For Ln=Ho, we find an exotic state governed by octupole moment. For Ln=Tb and Tm, no significant multipole moments appear at low temperatures, while for Ln=Dy, Er, and Yb, dipole and higher-order multipoles are dominant. We briefly discuss possible relevance of these multipole states with actual materials.Comment: 5 pages, 3 figure

    Self-Consistent Perturbation Theory for Thermodynamics of Magnetic Impurity Systems

    Full text link
    Integral equations for thermodynamic quantities are derived in the framework of the non-crossing approximation (NCA). Entropy and specific heat of 4f contribution are calculated without numerical differentiations of thermodynamic potential. The formulation is applied to systems such as PrFe4P12 with singlet-triplet crystalline electric field (CEF) levels.Comment: 3 pages, 2 figures, proc. ASR-WYP-2005 (JAERI

    Effects of Impurities with Singlet-Triplet Configuration on Multiband Superconductors

    Full text link
    Roles of multipole degrees of freedom in multiband superconductors are investigated in a case of impurities whose low-lying states consist of singlet ground and triplet excited states, which is related to the experimental fact that the transition temperature TcT_{\rm c} is increased by Pr substitution for La in LaOs4_4Sb12_{12}. The most important contribution to the TcT_{\rm c} increase comes from the inelastic interband scattering of electrons coupled to quadrupole or octupole moments of impurities. It is found that a magnetic field modifies an effective pairing interaction and the scattering anisotropy appears in the field-orientation dependence of the upper critical field Hc2H_{{\rm c}2} in the vicinity of TcT_{\rm c}, although a uniaxial anisotropic field is required for experimental detection. This would be proof that the Pr internal degrees of freedom are relevant to the stability of superconductivity in (La1−x_{1-x}Prx_x)Os4_4Sb12_{12}.Comment: 10 pages, 5 figures, to appear in J. Phys. Soc. Jp
    • …
    corecore