36 research outputs found

    Determination of conifer age biomarker DAL1 interactome using Y2H-seq

    Get PDF
    Age is a sophisticated physiological signal that ensures the sequence of different developmental stages in organisms. The regulation of ageing pathways appears to differ between gymnosperms and angiosperms. We previously identified DAL1 as a conserved conifer age biomarker that plays a crucial role in the transition from vegetative to reproductive life-history phases in pines. Therefore, elucidating the specific interaction events related to DAL1 is key to understanding how age drives conifer development. Large-scale yeast two-hybrid (Y2H) analysis followed by next-generation high-throughput sequencing (Y2H-seq) allowed us to identify 135 PtDAL1 interacting proteins in Pinus tabuliformis. Our study found that PtDAL1 interacting proteins showed an ageing-related module, with sophisticated interacting networks composed of transcription factors (TFs), transcriptional regulators (TRs), and kinases. These interacting proteins are produced in response to a variety of phytohormones and environmental signals, and are likely involved in wood formation, needle development, oleoresin terpenoids biosynthesis, and reproductive development. In this study, we propose a novel regulation model of conifer ageing pathways whereby PtDAL1 coordinates different environmental stimuli and interacts with corresponding proteins to regulate appropriate development

    The Chinese pine genome and methylome unveil key features of conifer evolution

    Get PDF
    Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Monitoring genetic diversity across Pinus tabuliformis seed orchard generations using SSR markers

    No full text
    The maintenance of genetic diversity across seed orchard generations is an important management objective. Here, we used Pinus tabuliformis as a model to explore the extent of genetic diversity across the species’ breeding activities through their corresponding seed orchards generations. We utilized a large number of SSR markers selected from Pinus tabuliformis transcriptomic data, and then assessed the effect of marker number on genetic diversity and individuals’ genetic relationships across orchards’s generations. In total, we designed 125 simple sequence repeat (SSR) markers, from which 39 SSRs were polymorphic and used in the present study. The genetic diversity and genetic distance parameters tended to increase with thean increase ofin markerloci numbers and a stable trend was reached at 24 SSRs. The selected optimal 24 SSR markers were further used to assess the genetic diversity across seed orchards’s generations, and a decreasing trend was detected with the advancement of orchards’s generations. Genetic distance analysis indicated that individuals in the 2nd generation orchard was more closely related as compared to those of the 1st- and 1.5-generations. This study provided valuable information on the effect of selection and breeding on genetic diversity and highlighted its role for effective seed orchards management.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine

    Get PDF
    DNA methylation level declines during aging of mammals. Here, the authors report single-base resolution landscape of cytosine DNA methylation at different ages of Chinese pine and show that the global cytosine DNA methylation gradually increases as age progresses.Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers

    Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard.

    No full text
    Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined open- and control-pollinated progeny of the first-generation Chinese pine seed orchards in Zhengning (Gansu Province, China) and Xixian (Shanxi Province, China) to address issues related to phenotypic selection for high volume growth, genetic diversity analysis and genetic distance-based phylogenetic analysis of the selections by simple sequence repeats (SSRs), and phylogenetic relationship-based field deployment for advanced-generation orchards. In total, 40, 28, 20, and 13 superior individuals were selected from the large-scale no-pedigree open-pollinated progeny of Zhengning (ZN-NP), open-pollinated families of Zhengning (ZN-OP), open-pollinated families of Xixian (XX-OP), and control-pollinated families of Xixian, with mean volume dominance ratios of 0.83, 0.15, 0.25, and 0.20, respectively. Phylogenetic relationship analysis of the ZN-NP and XX-OP populations showed that the 40 superior individuals in the ZN-NP selected population belonged to 23 families and could be further divided into five phylogenetic groups, and that families in the same group were closely related. Similarly, 20 families in the XX-OP population were related to varying degrees. Based on these results, we found that second-generation Chinese pine seed orchards in Zhengning and Xixian should adopt a grouped, unbalanced, complete, fixed block design and an unbalanced, incomplete, fixed block design, respectively. This study will provide practical references for applying molecular markers to establishing advanced-generation seed orchards

    miR-103-3p Regulates the Differentiation and Autophagy of Myoblasts by Targeting MAP4

    No full text
    Skeletal muscle is the most abundant tissue in mammals, and myogenesis and differentiation require a series of regulatory factors such as microRNAs (miRNAs). In this study, we found that miR-103-3p was highly expressed in the skeletal muscle of mice, and the effects of miR-103-3p on skeletal muscle development were explored using myoblast C2C12 cells as a model. The results showed that miR-103-3p could significantly reduce myotube formation and restrain the differentiation of C2C12 cells. Additionally, miR-103-3p obviously prevented the production of autolysosomes and inhibited the autophagy of C2C12 cells. Moreover, bioinformatics prediction and dual-luciferase reporter assays confirmed that miR-103-3p could directly target the microtubule-associated protein 4 (MAP4) gene. The effects of MAP4 on the differentiation and autophagy of myoblasts were then elucidated. MAP4 promoted both the differentiation and autophagy of C2C12 cells, which was contrary to the role of miR-103-3p. Further research revealed that MAP4 colocalized with LC3 in C2C12 cell cytoplasm, and the immunoprecipitation assay showed that MAP4 interacted with autophagy marker LC3 to regulate the autophagy of C2C12 cells. Overall, these results indicated that miR-103-3p regulated the differentiation and autophagy of myoblasts by targeting MAP4. These findings enrich the understanding of the regulatory network of miRNAs involved in the myogenesis of skeletal muscle

    Improved genetic distance-based spatial deployment can effectively minimize inbreeding in seed orchard

    No full text
    Background: Inbreeding in seed orchards is expected to increase with the advancement of breeding cycles, which results in the delivery of crops with suboptimal genetic gain, reduced genetic diversity, and lower seed set. Here, a genetic distance-dependent method for clonal spatial deployment in seed orchards was developed and demonstrated, which reduced the inbreeding levels. The method’s main evaluation parameter of inbreeding is the genetic distance among individuals and the deployment method used an improved adaptive parallel genetic algorithm (IAPGA) based on Python language. Using inbreeding-prone Chinese Mongolian pine breeding population material originating from a single natural population, the proposed method was compared to a traditional orchard design and a distance-based design; namely, complete randomized block (RCB) and optimum neighborhood (ONA) designs, respectively. Results: With the advancement of selective breeding cycles, group separation among orchard related individuals is expected to increase. Based on the genetic distance among individuals, the IAPGA design was superior in significantly reducing the inbreeding level as compared to the two existing designs, confirming its suitability to advanced-generation orchards where relatedness among parents is common. In the 1st, 2nd, and mixed generations clonal deployment schemes, the IAPGA design produced lower inbreeding with 87.22%, 81.49%, and 87.23% of RCB, and 92.78%, 91.30%, and 91.67% of ONA designs, respectively. Conclusions: The IAPGA clonal deployment proposed in this study has the obvious advantage of controlling inbreeding, and it is expected to be used in clonal deployment in seed orchards on a large-scale. Further studies are needed to focus on the actual states of pollen dispersal and mating in seed orchards, and more assumptions should be taken into account for the optimized deployment method.Forestry, Faculty ofNon UBCForest and Conservation Sciences, Department ofReviewedFacult

    Development and Characterization of 25 EST-SSR markers in <i>Pinus sylvestris</i> var. <i>mongolica</i> (Pinaceae)

    No full text
    Premise of the study: A set of novel expressed sequence tag (EST) microsatellite markers was developed in Pinus sylvestris var. mongolica to promote further genetic studies in this species. Methods and Results: One hundred seventy-five EST&#8211;simple sequence repeat (SSR) primers were designed and synthesized for 31,653 isotigs based on P. tabuliformis EST sequences. The primer pairs were used to identify 25 polymorphic loci in 48 individuals. The number of alleles ranged from two to eight with observed and expected heterozygosity values of 0.0435 to 0.8125 and 0.0430 to 0.7820, respectively. Conclusions: These new polymorphic EST-SSR markers will be useful for assessing genetic diversity, molecular breeding and genetic improvement, and conservation of P. sylvestris var. mongolica
    corecore