37 research outputs found
Detection of Freezing of Gait Using Template-Matching-Based Approaches
Every year, injuries associated with fall incidences cause lots of human suffering and assets loss for Parkinson’s disease (PD) patients. Thereinto, freezing of gait (FOG), which is one of the most common symptoms of PD, is quite responsible for most incidents. Although lots of researches have been done on characterized analysis and detection methods of FOG, large room for improvement still exists in the high accuracy and high efficiency examination of FOG. In view of the above requirements, this paper presents a template-matching-based improved subsequence Dynamic Time Warping (IsDTW) method, and experimental tests were carried out on typical open source datasets. Results show that, compared with traditional template-matching and statistical learning methods, proposed IsDTW not only embodies higher experimental accuracy (92%) but also has a significant runtime efficiency. By contrast, IsDTW is far more available in real-time practice applications
Link Layer Time-Varying Model for IEEE 802.15.4 Radio in Industrial Environment
IEEE 802.15.4 PHY has been widely used in wireless sensor networks. In-depth investigations on the link layer characteristics are important for WSN protocol design. In industrial environments, link reliability is vulnerable to various interferences; therefore, many schemes have been employed for reliability improvements such as multichannel access, frequency hopping, and multipath routing, which put forward the demand on link reliability models. Previous researches mainly focus on distance fading and irregularity of link reliability; however, little work analyses the temporal and frequency variations of the link reliability. The paper proposed a link layer statistical model (LTM) for time-varying of 16 channels based on packet drop rate (PDR) data collected from typical industrial environments. LTM descript packet drop intervals, PDR variation over times, PDR variation between different channels, link level switching probability and interference distribution. And also, a discussion of the influence of IEEE 802.15.4e MAC protocol simulation showed that LTM is closer to the realistic result. This paper provides a new method to model link reliability in industrial environment and is useful to the design of frequency diversity and upper layer protocols
Experimental Study on Fatigue Performance of Welded Hollow Spherical Joints Reinforced by CFRP
The risk of fatigue failure of welded hollow spherical joints (WHSJs) under alternating loads increases due to the inherent defects, the disrepair, and the demand for tonnage upgrades, of suspension cranes. The finite element analysis results revealed that the ranking of the stress concentration factor at the WHSJ was as follows: weld toe in steel tube of tube–ball connection weld > weld toe in steel tube of tube–endplate connection weld > weld toe in sphere of tube–ball connection weld > weld toe in plate of tube–endplate connection weld. Moreover, the peak stress at the weld of the tube–sphere connection was reduced by 32.93% after CFRP bonding reinforcement, which was beneficial for improving the fatigue performance. In this study, 16 full-scale specimens of Q235B WHSJs were tested by an MTS fatigue testing machine to study the strengthening effect of CFRP on the fatigue performance. It was found that the fatigue fracture of WHSJs was transferred from the tube–sphere connection weld to the tube–endplate connection after CFRP reinforcement. According to the fitted S-N curves, the fatigue strength could be increased by 13.26%–18.19% when the cycle number increased from 10,000 to 5,000,000
Experimental Study on Bearing Capacity of Compression Members of Space Grid Structures Reinforced by RPC
Insufficient bearing capacity of compression bars in space grid structures can significantly reduce the collapse resistance of structures and cause immeasurable losses. Reactive powder concrete (RPC) with high strength, micro-expansion, and good ductility is used to reinforce the compression members of grid structures by infilling steel tubes. Axial compression tests on five types of high-frequency welded pipes with different section sizes and initial stresses were carried out. The results showed that compared to steel tubes alone, the bearing capacity of steel tubes reinforced by RPC could be increased by 75.77 to 218.34%. With a decrease of either the initial stress or confinement coefficient, the contribution of the material reinforcement increased. The failure mode of the specimen after RPC grouting was the same as that of the non-reinforced steel pipe, which was dominated by elastic-plastic buckling. The grouting hole after reinforcement did not fail prior to the instability of the member, which suggests that necessary measures to repair the hole should be taken. Based on the design method of axial compression bearing capacity of concrete-filled steel tubular members in six codes in China and abroad, the test results of this paper and 242 RPC-filled steel tubes were compared and analyzed. Finally, an equation of nominal bearing capacity, which estimates the ultimate bearing capacity of compressive members strengthened by filled RPC in grid structures, was proposed
Experimental Study on Bearing Capacity of Compression Members of Space Grid Structures Reinforced by RPC
Insufficient bearing capacity of compression bars in space grid structures can significantly reduce the collapse resistance of structures and cause immeasurable losses. Reactive powder concrete (RPC) with high strength, micro-expansion, and good ductility is used to reinforce the compression members of grid structures by infilling steel tubes. Axial compression tests on five types of high-frequency welded pipes with different section sizes and initial stresses were carried out. The results showed that compared to steel tubes alone, the bearing capacity of steel tubes reinforced by RPC could be increased by 75.77 to 218.34%. With a decrease of either the initial stress or confinement coefficient, the contribution of the material reinforcement increased. The failure mode of the specimen after RPC grouting was the same as that of the non-reinforced steel pipe, which was dominated by elastic-plastic buckling. The grouting hole after reinforcement did not fail prior to the instability of the member, which suggests that necessary measures to repair the hole should be taken. Based on the design method of axial compression bearing capacity of concrete-filled steel tubular members in six codes in China and abroad, the test results of this paper and 242 RPC-filled steel tubes were compared and analyzed. Finally, an equation of nominal bearing capacity, which estimates the ultimate bearing capacity of compressive members strengthened by filled RPC in grid structures, was proposed
Towards Human Motion Tracking: Multi-Sensory IMU/TOA Fusion Method and Fundamental Limits
Human motion tracking could be viewed as a multi-target tracking problem towards numerous body joints. Inertial-measurement-unit-based human motion tracking technique stands out and has been widely used in body are network applications. However, it has been facing the tough problem of accumulative errors and drift. In this paper, we propose a multi-sensor hybrid method to solve this problem. Firstly, an inertial-measurement-unit and time-of-arrival fusion-based method is proposed to compensate the drift and accumulative errors caused by inertial sensors. Secondly, Cramér⁻Rao lower bound is derived in detail with consideration of both spatial and temporal related factors. Simulation results show that the proposed method in this paper has both spatial and temporal advantages, compared with traditional sole inertial or time-of-arrival-based tracking methods. Furthermore, proposed method is verified in 3D practical application scenarios. Compared with state-of-the-art algorithms, proposed fusion method shows better consistency and higher tracking accuracy, especially when moving direction changes. The proposed fusion method and comprehensive fundamental limits analysis conducted in this paper can provide a theoretical basis for further system design and algorithm analysis. Without the requirements of external anchors, the proposed method has good stability and high tracking accuracy, thus it is more suitable for wearable motion tracking applications